Skip to main content
Log in

Helium 3 precipitation in AISI 316L stainless steel induced by radioactive decay of tritium: Growth mechanism of helium bubbles

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The growth of helium bubbles in 316L stainless steel in which helium was generated from the tritium decay is examined using image analysis of transmission electron microscopy (TEM) micrographs. The influence of temperature (1073, 1223, and 1373 K), annealing time (0.083 to 1000 hours), cold deformation (92 pct) and helium content (35 and 3.7 appm) on the bubble’s density, volume fraction, and mean size is investigated. For the chosen conditions of helium precipitation and growth (high temperature and large annealing time), the experimental results suggest that the observed increase in the size of the large bubbles present after a 0.083-hour aging at 1373 K proceedsvia a facet limited migration and coalescence mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.V. Kornelsen:Radiat. Eff., 1972, vol. 13, pp. 227–36.

    CAS  Google Scholar 

  2. G.J. Thomas, W.A. Swansiger, and M.I. Baskes:J. Appl. Phys., 1979, vol. 50, pp. 6942–47.

    Article  CAS  Google Scholar 

  3. D.J. Reed:Radiat. Eff., 1977, vol. 31, pp. 129–47.

    CAS  Google Scholar 

  4. H. Ullmaier:Nucl. Fusion, 1984, vol. 24 (8), pp. 1039–83.

    CAS  Google Scholar 

  5. J.R. Cost, R.G. Hickman, J.B. Holt, and R.J. Borg:Proc. Int. Conf. on Radiation Effects and Tritium Technology for Fusion Reactors, Gatlinburg, ERDA Conf. No. 750989, 1975, vol. II, pp. 234-49.

  6. V. Philipps and K. Sonnenberg:J. Nucl. Mater., 1982, vol. 107, pp. 271–79.

    Article  CAS  Google Scholar 

  7. V. Sciani and P. Jung:Radiat. Eff., 1983, vol. 78, pp. 87–99.

    CAS  Google Scholar 

  8. H. Ullmaier:Radiat. Eff., 1983, vol. 78, pp. 1–10.

    CAS  Google Scholar 

  9. D.J. Reed, F.T. Harris, D.G. Armour, and G. Carter:Vacuum, 1974, vol. 24, pp. 179–86.

    Article  CAS  Google Scholar 

  10. A.M. Brass, A. Chanfreau, and J. Chêne:Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2117–30.

    CAS  Google Scholar 

  11. W.D. Wilson, M.I. Baskes, and C.L. Bisson:Phys. Rev., 1976, vol. B13, pp. 2470–78.

    Google Scholar 

  12. W.D. Wilson:Radiat. Eff., 1983, vol. 78, pp. 11–24.

    CAS  Google Scholar 

  13. G.W. Greenwood, A.J.E. Foreman, and D.E. Rimmer:J. Nucl. Mater., 1959, vol. 4, pp. 305–24.

    Article  Google Scholar 

  14. J.H. Evans, A.V. Veen, and L.M. Caspers:Sci. Metall., 1981, vol. 15, pp. 323–26.

    Article  CAS  Google Scholar 

  15. H.R. Glyde and K.Y. Mayne:Phil. Mag., 1965, vol. 12, pp. 997–1003.

    CAS  Google Scholar 

  16. G.W. Greenwood and A. Boltax:J. Nucl. Mater., 1962, vol. 5, pp. 234–40.

    Article  CAS  Google Scholar 

  17. W. Beere:Scripta Metall., 1975, vol. 9, pp. 999–1001.

    Article  CAS  Google Scholar 

  18. G.W. Greenwood and M.V. Speight:J. Nucl. Mater., 1963, vol. 10, pp. 140–44.

    Article  CAS  Google Scholar 

  19. R.S. Barnes:J. Nucl. Mater., 1964, vol. 11, pp. 135–48.

    Article  CAS  Google Scholar 

  20. E.E. Gruber:J. Appl. Phys., 1967, vol. 38, pp. 243–50.

    Article  CAS  Google Scholar 

  21. E.M. Baroody:J. Appl. Phys., 1967, vol. 38, pp. 4893–4903.

    Article  CAS  Google Scholar 

  22. M.I. Baskes and V. Vitek:Metall. Trans. A, 1985, vol. A16, pp. 1625–31.

    Google Scholar 

  23. H. Schroeder and P.F.P. Fichtner:J. Nucl. Mater., 1991, vol. 179-81, pp. 1007–10.

    Article  Google Scholar 

  24. T. Furuta and S. Kawasaki:J. Nucl. Mater., 1974, vol. 50, pp. 275–80.

    Article  CAS  Google Scholar 

  25. J. Rothaut, H. Schroeder, and H. Ullmaier:Phil. Mag. A, 1983, vol. 47 (5), pp. 781–95.

    CAS  Google Scholar 

  26. H. Gleiter: inPhysical Metallurgy, R.W. Cahn and P. Haasen, eds., 1983, Part I, pp. 683-712.

  27. V. Randle:Acta Metall. Mater., 1991, vol. 39 (4), pp. 481–92.

    Article  CAS  Google Scholar 

  28. W.A. Goghlan and L.K. Mansur:J. Nucl. Mater., 1984, vol. 122-123, pp. 495–500.

    Article  Google Scholar 

  29. C. Herring:J. Appl. Phys., 1950, vol. 21, pp. 301–03.

    Article  CAS  Google Scholar 

  30. P.J. Goodhew and S.K. Tyler:Proc. R. Soc. London A, 1981, vol. A377, pp. 151–84.

    Google Scholar 

  31. W.B. Beere and G.L. Reynolds:Acta Metall., 1972, vol. 20, pp. 845–48.

    Article  CAS  Google Scholar 

  32. L.E. Murr, R.J. Horylev, and W.N. Lin:Phil. Mag., 1970, vol. 22, pp. 515–42.

    CAS  Google Scholar 

  33. S.K. Tyler and P.J. Goodhew:J. Nucl. Mater., 1978, vol. 74, pp. 27–33.

    Article  CAS  Google Scholar 

  34. W.L. Winterbottom and N.A. Gjostein:Acta Metall., 1966, vol. 14, pp. 1041–52.

    Article  CAS  Google Scholar 

  35. L.E. Willertz and P.G. Shewmon:Metall. Trans., 1970, vol. 1, pp. 2217–23.

    Article  CAS  Google Scholar 

  36. K.Y. Chen and J.R. Cost:J. Nucl. Mater., 1974, vol. 52, pp. 59–74.

    Article  CAS  Google Scholar 

  37. P.J. Goodhew and L.J. Perryman:Proc. on Material Nuclear Reactor Core Application, BNES, London, 1987, p. 17.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with CNRS, is Postdoctor, Department PuA, CEA-DAM, Bruyères Le Châtel, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chanfreau, A., Brass, A.M., Haut, C. et al. Helium 3 precipitation in AISI 316L stainless steel induced by radioactive decay of tritium: Growth mechanism of helium bubbles. Metall Mater Trans A 25, 2131–2143 (1994). https://doi.org/10.1007/BF02652314

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652314

Keywords

Navigation