Skip to main content
Log in

Helium 3 precipitation in AISI 316L stainless steel induced by radioactive decay of tritium: Microstructural study of helium bubble precipitation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article deals with the study of the influence of thermomechanical heat treatments, aging conditions (temperature and time), and helium concentration on helium bubble precipitation in a 316L austenitic steel. Helium was generated by the radioactive decay of tritium (tritium trick). Helium bubbles impede the grain growth in 316L steel aged at 1373 K and also the recrystal-lization reaction at this temperature if cold working is performed prior to aging. Transmission electron microscopy (TEM) observations indicated a weak helium precipitation at 1073 and 1223 K, presumably due to the presence of trapping sites for tritium, and no bubble growth after aging up to 100 hours. Precipitation sites are mainly dislocations in the matrix at 1073 K and grain boundaries and individual dislocations in the matrix at 1223 K. The large bubble size (50 nm) observed at 1373 K, even for short aging times (0.083 hour), can partly be attributed to bubble dragging by dislocations toward the grain boundaries. Cold deformation prior to aging leads to a larger bubble size due to growth enhancement during recrystallization. Decreasing the helium content leads to a smaller helium bubble size and density. Tritium trapping at helium bubbles may favor helium 3 accumulation on defects such as grain boundaries, as observed by tritium autoradiography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ullmaier:Nucl. Fusion, 1984, vol. 24 (8), pp. 1039–83.

    CAS  Google Scholar 

  2. B. Hircq:Proc. 16th Symp. on Fusion Technology, London, Sept. 1990, vol. 1, pp. 161–70.

    Google Scholar 

  3. H.J. von Driesch and P. Jung:High Temp.-High Pressures, 1980, vol. 12, pp. 635–41.

    Google Scholar 

  4. A.W. Rowcliffe:J. Nucl. Mater., 1966, vol. 18, pp. 60–65.

    Article  CAS  Google Scholar 

  5. H. Gleiter: inPhysical Metallurgy, R.W. Cahn and P. Haasen, eds., 1983, Part 1, pp. 683-712.

  6. J. Rothaut, H. Schroeder, and H. Ullmaier:Phil. Mag. A, 1983, vol. 47 (5), pp. 781–95.

    CAS  Google Scholar 

  7. D. Kramer, H.R. Brager, C.G. Rhodes, and A.G. Pard:J. Nucl. Mater., 1968, vol. 25, pp. 121–31.

    Article  CAS  Google Scholar 

  8. T. Furuta and S. Kawasaki:J. Nucl. Mater., 1974, vol. 50, pp. 275–80.

    Article  CAS  Google Scholar 

  9. B. Van der Schaaf:Ann. Chim. (Paris), 1989, vol. 14, pp. 97–111.

    Google Scholar 

  10. E.V. Kornelsen:Radiat. Eff., 1972, vol. 13, pp. 227–36.

    CAS  Google Scholar 

  11. G.J. Thomas, W.A. Swansiger, and M.I. Baskes:J. Appl. Phys., 1979, vol. 50, pp. 6942–47.

    Article  CAS  Google Scholar 

  12. D.J. Reed:Radiat. Eff., 1977, vol. 31, pp. 129–47.

    CAS  Google Scholar 

  13. D.J. Reed, F.T. Harris, D.G. Armour, and G. Carter:Vacuum, 1974, vol. 24, pp. 179–86.

    Article  CAS  Google Scholar 

  14. H. Schroeder and N. Yamamoto:J. Nucl. Mater., 1991, vol. 179-81, pp. 453–56.

    Article  Google Scholar 

  15. H. Schroeder and P.F.P. Fichtner:J. Nucl. Mater., 1991, vol. 179-81, pp. 1007–10.

    Article  Google Scholar 

  16. K.R. Garr, D. Kramer, and C.G. Rhodes:Metall. Trans., 1971, vol. 2, pp. 269–75.

    CAS  Google Scholar 

  17. A.W. Thompson:Mater. Sci. Eng., 1975, vol. 21, pp. 41–48.

    Article  CAS  Google Scholar 

  18. P. Sacovy, G. Brun, J. Devaux, J.P. Fidelle, and J. Delaplace:3rd Int. Congress on Hydrogen Materials, P. Azou, ed., Paris, 1982, vol. 2(1-11), pp. 905-10.

  19. S.L. Robinson:Mater. Sci. Eng., 1987, vol. 96, pp. 7–16.

    Article  CAS  Google Scholar 

  20. V. Randle:Acta Metall. Mater., 1991, vol. 39 (4), pp. 481–92.

    Article  CAS  Google Scholar 

  21. A.A. Sagues, H. Schroeder, W. Kesternich, and H. Ullmaier:J. Nucl. Mater., 1978, vol. 78, pp. 289–98.

    Article  Google Scholar 

  22. G.R. Ceskey, Jr., D.E. Rawl, Jr., and D.A. Mezzanotte, Jr.:Scripta Metall., 1982, vol. 16, pp. 969–72.

    Article  Google Scholar 

  23. H.T. Lin, M.L. Grossbeck, and B.A. Chin:Metall. Trans., 1990, vol. 21A, pp. 2585–96.

    CAS  Google Scholar 

  24. S.L. Robinson:Mater. Sci. Eng., 1987, vol. 7, pp. 96–106.

    Google Scholar 

  25. R. Blackburn:Metall. Rev., 1966, vol. 11, pp. 159–76.

    Google Scholar 

  26. H.T. Lin: Ph.D. Thesis, Auburn University, Auburn, AL, 1989.

    Google Scholar 

  27. R. Lasser:Tritium and Helium 3 in Metals, Springer Verlag, 1989, p. 5.

  28. S.H. Goods, H.T. Lin, M.L. Grossbeck, and B.A. Chin: New York NY, Report No. 88-8712, Sandia National Laboratory, Albuquerque, NM, April 1988.

  29. A. Chanfreau, A.M. Brass, C. Haut, and J. Chêne:Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2131–43.

    CAS  Google Scholar 

  30. B. Hircq: CEA Technical Report No. N2644, CEA, Bruyères Le Châtel, 1989.

  31. B. Hircq: CEA Technical Report No. N2665, CEA, Bruyères Le Châtel, 1990.

  32. P. Tison:Ph.D. Thesis, University of Paris, Paris VI, June 1983.

    Google Scholar 

  33. A. Chanfreau: Ph.D. Thesis, University of Orsay, Paris, June 1992.

    Google Scholar 

  34. E.E. Underwood:Quantitative Stereology, Addison-Wesley, Reading, MA, 1970.

    Google Scholar 

  35. B. Weiss and R. Stickler:Metall. Trans., 1972, vol. 3, pp. 851–66.

    Article  CAS  Google Scholar 

  36. Y. Adda, J.M. Dupouy, J. Philibert, and Y. Quéré:Eléments de Métallurgie Physique, INSTN, CEA, Bruyères Le Châtel, 1991, vol. 5, pp. 1537–49.

    Google Scholar 

  37. K.Y. Chen and J.R. Cost:J. Nucl. Mater., 1974, vol. 52, pp. 59–74.

    Article  CAS  Google Scholar 

  38. G.J. Thomas:3rd Int. Conf. on Effect of Hydrogen Behaviour in Materials, Proc. TMS-AIME Warrendale, PA, 1981, pp. 77–85.

    Google Scholar 

  39. T.P. Perng and C.J. Alstetter:Acta Metall., 1986, vol. 34 (9), pp. 1771–81.

    Google Scholar 

  40. A. Atrens, J.J. Bellina, N.F. Fiore, and R.J. Coyle: inThe Metal Science of Stainless Steel, W. Collings and H.W. King, eds., TMS-AIME, New York, NY, 1979, pp. 54–69.

    Google Scholar 

  41. J. Chêne:Proc. of the 1st Int. Conf. on Current Solutions to Hydrogen Problems in Steels, C.G. Interrante and G.M Pressouyre, eds., Washington, DC, Nov. 1982, pp. 263-71.

  42. W.B. Beere and G.L. Reynolds:Acta Metall., 1972, vol. 20, pp. 845–48.

    Article  CAS  Google Scholar 

  43. W.B. Beere:Phil. Mag., 1972, vol. 25, pp. 189–200.

    CAS  Google Scholar 

  44. M.I. Baskes:MRS Bull., 1986, vol. XI (4), pp. 14–18.

    Google Scholar 

  45. M.I. Baskes and V. Vitek:Metall. Trans. A, 1985, vol. A16, pp. 1625–31.

    Google Scholar 

  46. A. Chanfreau, A.M. Brass, and J. Chêne:Proc. 16th Symp. on Fusion Technology, London, Sept. 1990, vol. 1, pp. 448-52.

  47. E. Abramov and D. Eliezer: inConf. on Hydrogen Effects on Material Behavior, N.R. Moody and A.W. Thompson, eds. Jackson Lake, WY, Sept. 1989, pp. 169–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with CNRS, is Postdoctor, Department PuA, CEA-DAM, Bruyères Le Châtel, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brass, A.M., Chanfreau, A. & Chene, J. Helium 3 precipitation in AISI 316L stainless steel induced by radioactive decay of tritium: Microstructural study of helium bubble precipitation. Metall Mater Trans A 25, 2117–2130 (1994). https://doi.org/10.1007/BF02652313

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652313

Keywords

Navigation