Skip to main content
Log in

The elastic strain energy of growth ledges on coherent and partially coherent precipitates

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The formation rate of growth ledges on a faceted precipitate strongly affects the growth kinetics and the shape of the precipitate. An Eshelby-type model is used to compare the strain energy associated with the nucleation of a ledge on different facet planes of a body-centered cubic (bcc) precipitate in face-centered cubic (fcc) matrix. Ledge nucleation is only likely at facet areas where the interaction energy between the ledge and the precipitate is negative. The strain energy for ledge formation is not symmetric on any of the facet planes, but it is symmetric about the center of the precipitate. For coherent precipitates comparable to those observed in the Ni-Cr system, ledges form with the lowest strain energy on the broad facet of the precipitate implying that precipitate thickening should occur faster than lengthening and widening. A procedure for modifying the Eshelby model is suggested in order to allow strain-energy calculations of partially coherent precipitates. The strain energy for ledge formation on at least one type of partially coherent lath is lowest for a ledge located on the facet perpendicular to the crystallographic invariant line (IL). This situation favors precipitate lengthening in the invariant line direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.A. Bywater and D.J. Dyson:Met. Sci., 1975, vol. 9, pp. 155–62.

    Article  CAS  Google Scholar 

  2. U. Dahmen:Scripta Metall., 1981, vol. 15, pp. 77–81.

    Article  Google Scholar 

  3. U. Dahmen:Acta Metall., 1982, vol. 30, pp. 63–73.

    Article  CAS  Google Scholar 

  4. U. Dahmen and K.H. Westmacott: inProc. Int. Conf. on Solid-State Phase Transformations, H.I. Aaronson, D.E. Laughlin, R.I. Sekerka, and CM. Wayman, eds., TMS-AIME, Warrendale, PA, 1983, pp. 433–37.

    Google Scholar 

  5. U. Dahmen and K.H. Westmacott:Acta Metall., 1986, vol. 34, pp. 475–82.

    Article  CAS  Google Scholar 

  6. U. Dahmen, P. Ferguson, and K.H. Westmacott:Acta Metall., 1984, vol. 32, pp. 803–10.

    Article  CAS  Google Scholar 

  7. A. Crosky, P.G. McDougall, and J.S. Bowles:Acta Metall., 1980, vol. 28, pp. 1495–1504.

    Article  CAS  Google Scholar 

  8. C.P. Luo and G.C. Weatherly:Acta Metall., 1987, vol. 35, pp. 1963–72.

    Article  CAS  Google Scholar 

  9. C.P. Luo and G.C. Weatherly:Phil. Mag. A, 1988, vol. 58, pp. 445–62.

    CAS  Google Scholar 

  10. A.G. Khachaturyan:Theory of Structural Transformations in Solids, John Wiley & Sons, New York, NY, 1983.

    Google Scholar 

  11. H.I. Aaronson: inThe Decomposition of Austenite By Diffusional Processes, V.F. Zackay and H.I. Aaronson, eds., Interscience, New York, NY, 1962, pp. 387–549.

    Google Scholar 

  12. H.I. Aaronson, C. Laird, and K.R. Kinsman: inPhase Transformations, ASM, Metals Park, OH, 1970, pp. 313–96.

    Google Scholar 

  13. C. Laird and H.I. Aaronson:Acta Metall., 1967, vol. 15, pp. 73–103.

    Article  CAS  Google Scholar 

  14. J.M. Howe, H.I. Aaronson, and R. Gronsky:Acta Metall., 1985, vol. 33, pp. 639–48.

    Article  CAS  Google Scholar 

  15. G.J. Shiflet: inPhase Transformations ’87, G.W. Lorimer, ed., Institute of Metals, London, 1988, pp. 438–50.

    Google Scholar 

  16. G.R. Purdy:Scripta Metall., 1987, vol. 21, pp. 1033–38.

    Google Scholar 

  17. J.W. Cahn, W.B. Hillig, and G.W. Sears:Acta Metall., 1964, vol. 12, pp. 1421–39.

    Article  CAS  Google Scholar 

  18. J.W. Cahn:Acta Metall., 1960, vol. 8, pp. 554–62.

    Article  CAS  Google Scholar 

  19. H.I. Aaronson, T. Furuhara, J.M. Rigsbee, W.T. Reynolds Jr., and J.M. Howe:Metall. Trans. A, 1990, vol. 21A, pp. 2369–2409.

    CAS  Google Scholar 

  20. H.I. Aaronson:J. Microsc, 1974, vol. 102, pp. 275–300.

    Google Scholar 

  21. H.I. Aaronson and C. Laird:Trans. AIME, 1968, vol. 242, pp. 1437–48.

    CAS  Google Scholar 

  22. Masato Enomoto:Metall. Trans. A, 1991, vol. 22A, pp. 1235–45.

    CAS  Google Scholar 

  23. C. Laird and R. Sankaran:J. Microsc, 1979, vol. 116, pp. 123–40.

    CAS  Google Scholar 

  24. G.C. Weatherly:Acta Metall., 1974, vol. 19, pp. 181–92.

    Google Scholar 

  25. R.M. Aikin, Jr. and M.R. Plichta:Acta Metall., 1990, vol. 38, pp. 77–93.

    Article  CAS  Google Scholar 

  26. V. Perovic, L.M. Brown, and G.R. Purdy:Acta Metall., 1981, vol. 29, pp. 889–902.

    Article  CAS  Google Scholar 

  27. D.E. Stephens, Y.J.M. Brechet, and G.R. Purdy:Scripta Metall., 1988, vol. 22, pp. 1897–1902.

    Article  CAS  Google Scholar 

  28. J.D. Eshelby:Proc. R. Soc. London A, 1957, vol. 241, pp. 376–97.

    Article  Google Scholar 

  29. T. Mura:Micromechanics of Defects in Solids, 2nd revised ed., Martinus Nijhoff Publishers, Dordrecht, The Netherlands, 1987.

    Google Scholar 

  30. R.M. Aikin, Jr. and M.R. Plichta: inPhase Transformations ’87, G.W. Lorimer, ed., Institute of Metals, London, 1988, pp. 504–06.

    Google Scholar 

  31. M. Hillert: inLectures on the Theory of Phase Transformations, H.I. Aaronson, ed., TMS-AIME, New York, NY, 1975, pp. 1–50.

    Google Scholar 

  32. P. Nash:Bull. Alloy Phase Diagrams, 1986, vol. 7 (5), p. 466.

    CAS  Google Scholar 

  33. E.C. Bain:Trans. TMS-AIME, 1924, vol. 70, p. 25.

    Google Scholar 

  34. J.K. Lee and W.C. Johnson:Scripta Metall., 1977, vol. 11, pp. 477–84.

    Article  Google Scholar 

  35. J.K. Lee:Metall. Trans. A, 1991, vol. 22A, pp. 1197–1209.

    Google Scholar 

  36. J.D. Eshelby:Prog. Sol. Mech., 1961, vol. 2, p. 89.

    Google Scholar 

  37. C.P. Luo: Ph. D. Dissertation, The University of Toronto, Toronto, Canada, 1986.

    Google Scholar 

  38. D.P. Dandekar and A.G. Martin:J. Mater. Sci. Lett., 1989, vol. 8, pp. 1172–73.

    Article  CAS  Google Scholar 

  39. B.W. Leitch and M.P. Puls:Metall. Trans. A, 1992, vol. 23A, pp. 797–806.

    CAS  Google Scholar 

  40. J.F. Nye:Physical Properties of Crystals, Oxford University Press, Oxford, 1957.

    Google Scholar 

  41. C.M. Wayman:Introduction to the Crystallography of Martensite Transformations, Macmillan, New York, NY, 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G., Chen, J.K., Lee, J.K. et al. The elastic strain energy of growth ledges on coherent and partially coherent precipitates. Metall Mater Trans A 25, 2073–2082 (1994). https://doi.org/10.1007/BF02652308

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652308

Keywords

Navigation