Skip to main content
Log in

Stress corrosion cracking of high strength HY-180M steel in 3.5 Pct NaCl

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Stress corrosion cracking of HY-180M steel was studied at 22°C in an aqueous solution of 3.5 pct NaCl (pH = 6.5). The steel had a nominal weight percentage composition of 10Ni-14Co-2Cr-lMo-0.16C and was heat treated to yield a fracture toughness value ofK Ic ≃ 160 MPa . m1/2. The SCC velocity (v) was studied as a function of stress intensity (K I) and electrochemical potential (E) using precracked compact tension specimens, a Ag/AgCl reference electrode and a 1000 h exposure test. Also, the polarization behavior, microstructure, fractography and corrosion products were studied. The results showed that SCC was markedly dependent uponE, and did not occur whenE =-0.52 VSHE (-0.72 VAg/AgCl), which corresponded closely to the thermodynamically reversible potential of iron. However, SCC occurred at a more noble potential of-0.28 VSHE (-0.48 VAg/AgCl ) and at a less noble potential of-0.80 VSHE (-1.00 VAg/AgCl). The stress intensity below which SCC was not observed was KISCC ≃ 5.5 MPa . m1/2 at -0.28 VSHE and KISCC ≃ 60 MPa . m1/2 at -0.80 VSHE . Also, Region I behavior (v dependent uponK 1) and Region II behavior (v independent ofK 1) were observed. Cracking was considered to occur solely by hydrogen embrittlement at -0.80 Vshe, whereas anodic dissolution processes played a necessary role, either directly or indirectly, in SCC at -0.28 VSHE . The indirect effects were discussed in relation to hydrolysis effects in the crack promoting hydrogen embrittlement and/or corrosion product wedging stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. D. Little and P. M. Machmeier:Development of a Weldable High Strength Steel, Rep. No. 1, Contract No. F33615-73-C-5093, General Dynamics, Fort Worth Div., July 1974.

  2. G. R. Speich, D. S. Dabkowski, and L. F. Porter:Met. Trans., 1973, vol. 4, pp. 303–15.

    CAS  Google Scholar 

  3. J. A. Snide:Some Aspects of the Physical Metallurgy and Weldability of 10 Nickel Modified Steel, Ph.D. Thesis, Ohio State University, 1975.

  4. ASTM E399-72,ASTM, Philadelphia, May 1972.

  5. M. O. Speidel and M. V. Hyatt:Adv. Corros. Sci. Technol., 1972, vol. 2, pp. 115–335.

    CAS  Google Scholar 

  6. W. F. B own, Jr. and J. E. Srawley:Plane Strain Crack Toughness Testing of High Strength Metallic Materials STP 410, ASTM, Philadelphia, 1966.

    Google Scholar 

  7. J. M. Marder and A. R. Marder:Trans. ASM Quart., 1969, vol. 62, pp. 1–10.

    CAS  Google Scholar 

  8. H. H. Uhlig:Corrosion and Corrosion Control, J. Wiley, N.Y., 1971,

    Google Scholar 

  9. J. H. Morgan:Cathodic Protection, L. Hill Ltd., London, 1959.

    Google Scholar 

  10. NACE Tech. Committee T-2U:Recommended Practice for Cathodic Protec- tion of Aluminum Pipe Buried in Soil or Immersed in Water NACE Pub. 2M363,June 1963.

  11. P. A. Parrish, C. M. Chen, and E. D. Verink, Jr.:Stress Corrosion-New Ap- proaches, STP 410,H.L. Craig, Jr., ed., pp. 189–98, ASTM, Philadelphia, 1976.

    Google Scholar 

  12. B. F. Brown:The Theory of Stress Corrosion Cracking in Alloys, J. C. Scully, ed., pp. 186–203, NATO, Sci. Aff. Div., Brussels, 1971.

    Google Scholar 

  13. I. David and J. E.Welch:Trans. Faraday Soc, 1956, vol. 52, pp. 1642–50.

    Article  CAS  Google Scholar 

  14. C. L. Foley, J. Kruger, and C. J. Bechtoldt:J. Electrochem. Soc, 1967, vol. 114, pp. 994–1001.

    Article  CAS  Google Scholar 

  15. M. Pourbaix:The Theory of Stress Corrosion Cracking in Alloys, J. C. Scully, ed., pp. 17–61, NATO Sci. Aff. Div., Brussels, 1971.

    Google Scholar 

  16. T. Misawa, T. Kyuno, W. Suetaka, and S. Shimodaira:Corros. Sci., 1971, vol. 11, pp. 35–48.

    Article  CAS  Google Scholar 

  17. H. P. Leckie:Fundamental Aspects of Stress Corrosion Cracking, R. W. Staehle, A. J. Forty, and D. van Rooyen,eds., pp. 411–17, NACE, Houston, 1969.

    Google Scholar 

  18. N. A. Nielsen:Physical Metallurgy of Stress Corrosion Cracking, T. N. Rhodin, ed., pp. 121–43, Interscience, N.Y., 1959.

    Google Scholar 

  19. R. G. Weast:Handbook of Chemistry andPhysics, Chemical Rubber Co., Cleveland, 1968.

    Google Scholar 

  20. H. H. Johnson:Fundamental Aspects of Stress Corrosion Cracking, R. W. Staehle, A. J. Forty, and D. van Rooyen, eds., pp. 439–44, NACE, Houston, 1969.

    Google Scholar 

  21. N. A. Tiner and C. B. Gilpin:Corrosion, 1966, vol. 22, pp. 271–79.

    CAS  Google Scholar 

  22. J. M. West:Electrodeposition and Corrosion Processes, D. van Nostrand Co., London, 1965.

    Google Scholar 

  23. K.J. Vetter:Electrochemical Kinetics, Academic Press, N.Y., 1967.

    Google Scholar 

  24. F. Mansfeld:Adv. Corros. Sci., 1976, vol. 6, pp. 163–262.

    CAS  Google Scholar 

  25. M. Pourbaix:Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, N.Y., 1966.

    Google Scholar 

  26. W. K. Wilson:Eng. Fract. Mech., 1970, vol. 2, pp. 169–71.

    Google Scholar 

  27. C.D. Beachem:Met. Trans., 1972, vol. 3, pp. 437–51.

    CAS  Google Scholar 

  28. American Inst. Physics Handbook, D. E. Gray, ed., pp. 2–118, McGraw-Hill, N.Y., 1957.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bala, S.r., Tromans, D. Stress corrosion cracking of high strength HY-180M steel in 3.5 Pct NaCl. Metall Trans A 9, 1125–1132 (1978). https://doi.org/10.1007/BF02652217

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652217

Keywords

Navigation