Skip to main content
Log in

A complete quantitative model of the isothermal vapor phase epitaxy of (Hg,Cd)Te

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A quantitative model of isothermal vapor phase epitaxy is proposed. It can be applied to both closed and open tube systems. This model enables the prediction of compositional profiles of the layers grown by isothermal vapor phase epitaxy with dependence on the growth parameters and thermodynamical data of the (Hg,Cd)Te system. The dependence of compositional profiles of the ISOVPE layers on temperature and time of deposition, source to substrate spacing, mercury and inert gas pressures are discussed for both solid and liquid sources. Modification of the compositional profiles by the postgrowth annealing has also been studied. The proper choice of growth and annealing parameters makes the optimization of the profiles possible. The calculated profiles are compared with the experimental data and a satisfactory quantitative fit is found in most cases. The possible reasons for remaining discrepancies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Shin and J. G. Pasko, Appl. Phys. Lett.44, 423 (1984).

    Article  CAS  Google Scholar 

  2. E. R. Gertner, S. H. Shin, D. D. Edwall, L. O. Bubulac, D. S. Lo. and W. E. Tennant, Appl. Phys. Lett.46, 851 (1985).

    Article  CAS  Google Scholar 

  3. P. Becla, L. Lagowski, H. G. Gatos and H. Ruda, J. Electrochem. Soc.128, 1171 (1981).

    Article  CAS  Google Scholar 

  4. P. Becla, L. Lagowski, H. Gatos and H. Ruda, J. Electrochem. Soc.129, 2855 (1982).

    Article  CAS  Google Scholar 

  5. P. Becla, J. Vac. Sci. Technol.A4, 2014 (1986).

    Google Scholar 

  6. T. L. Koch, J. H. de Loo, M. N. Kalisher and J. D. Philips,IEEE Trans.ED-32, 1593 (1985).

    Google Scholar 

  7. J. Piotrowski, Z. Djuric, W. Galus, V. Jovic, M. Grundzien, Z. Djinovic and Z. Nowak, J. Cryst. Growth83, 122 (1987).

    Article  CAS  Google Scholar 

  8. G. Cohen-Solal, Y. Marfaing, F. Bailly and M. Rodot, Compt. Rend.261, 931 (1965).

    CAS  Google Scholar 

  9. O. N. Tufte and E. L. Stelzer, J. Appl. Phys.40, 4559 (1969).

    Article  CAS  Google Scholar 

  10. J. Piotrowski and S. Wojciechowski, J. Electron. Technol.(Warsaw)12, 79 (1979).

    CAS  Google Scholar 

  11. J. G. Fleming and D. A. Stevenson, J. Cryst. Growth82, 621(1987).

    CAS  Google Scholar 

  12. K. Zanio and T. Massopust, J. Electron. Mater.15, 103 (1986).

    CAS  Google Scholar 

  13. M. F. S. Tang and D. A. Stevenson, Appl. Phys. Lett.50, 1272 (1987).

    Article  CAS  Google Scholar 

  14. Z. Djuric and J. Piotrowski, Appl. Phys. Lett.51, 1699 (1987).

    Article  CAS  Google Scholar 

  15. T. Tung, C. H. Su and R. F. Brebrick, J. Vac. Sci. Technol.21, 117 (1982).

    Article  CAS  Google Scholar 

  16. C. H. Su, P. K. Liao and R. F. Brebrick, J. Electrochem. Soc.132, 942 (1985).

    Article  CAS  Google Scholar 

  17. A. N. Matveev, Molecular Physics (in Russian). Ed. “High School,” Moscow (1981).

    Google Scholar 

  18. H. R. Vydyanath, J. Appl. Phys.59, 958 (1986).

    Article  CAS  Google Scholar 

  19. F. Bailly, L. Svob, G. Cohen-Solal and R. Triboulet, J. Appl. Phys.46, 4244 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djuric, Z., Djinovic, Z., Lazic, Z. et al. A complete quantitative model of the isothermal vapor phase epitaxy of (Hg,Cd)Te. J. Electron. Mater. 17, 223–228 (1988). https://doi.org/10.1007/BF02652182

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652182

Key words:

Navigation