Skip to main content
Log in

Complexing of nitrogen with carbon and oxygen in silicon: Photoluminescence studies

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We study interactions of nitrogen with carbon and oxygen in crystalline silicon by photoluminescence spectroscopy. Such processes manifest themselves in five photoluminescence lines in the spectral region around 1.6 μm emerging after nitrogen and carbon implantations and furnace annealing with 550° C optimum temperature. Nitrogen and carbon isotope shifts of the lines confirm the incorporation of these atomic species in the optical defects. Nitrogen-oxygen interactions are demonstrated by differences in the lines’ appearance between oxygen-lean float-zone and oxygen-rich pulled silicon starting materials. The data suggests similar basic nitrogen-carbon units in all five defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For a recent review, see H. J. Stein, in “Oxygen, Carbon, Hydrogen, and Nitrogen in Crystalline Silicon,” Materials Research Society Symposium Proceedings, Vol. 59, edited by J. C. Mikkelsen, S. J. Pearton, J. W. Corbett, and S. J. Pennycook (Materials Research Society, Pittsburgh, PA, 1986), p. 523.

    Google Scholar 

  2. T. Matsumori, K. Takeda, T. Kobayashi, H. Maekawa, and T. Izumi, Tokai Daigaku Kiyo, Kogakubu1, 1 (1972).

    Google Scholar 

  3. K. L. Brower, Phys. Rev. Lett.44, 1627 (1980).

    Article  CAS  Google Scholar 

  4. K. L. Brower, in “Defects and Radiation Effects in Semiconductors 1980” (Oiso, Japan), Institute of Physics Conf. Proc. No.59, edited by R. R. Hasiguti (Institute of Physics, Bristol, 1981), p. 491.

    Google Scholar 

  5. K. L. Brower, Phys. Rev.B26, 6040 (1982).

    Google Scholar 

  6. K. Murakami, K. Masuda, Y. Aoyagi, and S. Namba, PhysicaB116, 564 (1983).

    Google Scholar 

  7. K. Murakami, H. Itoh, K. Takita, and K. Masuda, Appl. Phys. Lett.45, 176 (1984).

    Article  CAS  Google Scholar 

  8. M. Sprenger, E. G. Sievers, S. H. Muller, and C. A. J. Ammerlaan, Solid State Commun.51, 951 (1984).

    Article  CAS  Google Scholar 

  9. Y. Tokumaru, H. Okushi, T. Masui, and T. Abe, Jpn. J. Appl. Phys.21, L443 (1982).

    Article  Google Scholar 

  10. T. Abe, K. Kikuchi, S. Shirai, and S. Muraoka, in “Semiconductor Silicon 1981,” edited by H. R. Huff, R. J. Kriegler, and Y. Takeishi(The Electrochemical Society, Pennington, NJ, 1981), p. 54.

    Google Scholar 

  11. T. Abe, H. Harada, N. Ozawa, and K. Adomi,, p. 537.

    Google Scholar 

  12. H. J. Stein, Appl. Phys. Lett.43, 296 (1983).

    Article  CAS  Google Scholar 

  13. H. J. Stein, J. Electron. Mater.14a, 839 (1985).

    Google Scholar 

  14. H. J. Stein, Electrochem. Soc.132, 668 (1985).

    Article  CAS  Google Scholar 

  15. H. J. Stein, P. S. Peercy, and C. R. Hills, Proc. Materials Research Society, Vol. 35, edited by D. K. Biegelsen, G. A. Rozgonyi, and C. V. Shank (Materials Research Society, Pittsburgh, PA, 1985), p. 315.

    Google Scholar 

  16. M. Tajima, Jpn. J. Appl. Phys.21, Suppl. 21–1, 113 (1982).

    CAS  Google Scholar 

  17. R. Sauer, J. Weber, and W. Zulehner, Appl. Phys. Lett.44, 440 (1984).

    Article  CAS  Google Scholar 

  18. H. Ch. Alt and L. Tapfer, J. Electron. Mater.14a, 833 (1985).

    Google Scholar 

  19. A. Dornen, G. Pensl, and R. Sauer, Phys. Rev.B33, 1495 (1986).

    Google Scholar 

  20. A. Dörnen, G. Pensl, and R. Sauer, Solid State Commun.57, 861 (1986).

    Article  Google Scholar 

  21. A. Dörnen, G. Pensl, and R. Sauer,, p. 545.

    Google Scholar 

  22. H. J. Stein, in “Microscopic Identification of Electronic Defects in Semiconductors,” Materials Research Society Symposium Proceedings, Vol.46, edited by N. M. Johnson, S. G. Bishop, and G. D. Watkins, (Materials Research Society, Pittsburgh, PA, 1985), p. 287.

    Google Scholar 

  23. K. P. O’Donnell, K. M. Lee, and G. D. Watkins, PhysicaB116, 258 (1983).

    Google Scholar 

  24. N. S. Minaev and A. V. Mudryi, Phys. Stat. Solidi 68(a), 561 (1981).

    Google Scholar 

  25. J. Weber and R. Sauer, in “Defects in Semiconductors II,” Materials Research Society Symposium Proceedings, Vol. 14, edited by S. Mahajan and J. W. Corbett, (North Holland, Amsterdam, 1983), p. 165.

    Google Scholar 

  26. M. Tajima, P. Stallhofer, and D. Huber, Jpn. J. Appl. Phys.22, L586 (1983).

    Article  Google Scholar 

  27. N. Magnea, A. Lazrak, and J. L. Pautrat, Appl. Phys. Lett.45, 60 (1984).

    Article  CAS  Google Scholar 

  28. A. Dörnen, R. Sauer, and J. Weber, J. Electron. Mater.14a, 653 (1985).

    Google Scholar 

  29. For a review of isotope effects on defect PL lines, see R. Sauer, in “Microscopic Identification of Electronic Defects in Semiconductors,” Materials Research Society Symposia Proceedings, Vol. 46, edited by N. M. Johnson, S. G. Bishop, and G. D. Watkins (Materials Research Society, Pittsburgh, Pennsylvania, 1985), p. 507.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dörnen, A., Sauer, R. & Pensl, G. Complexing of nitrogen with carbon and oxygen in silicon: Photoluminescence studies. J. Electron. Mater. 17, 121–125 (1988). https://doi.org/10.1007/BF02652141

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02652141

Key words

Navigation