Skip to main content
Log in

Grain growth mechanism in boron doped polycrystalline silicon

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The mechanism of grain growth in heavily boron doped polycrystalline silicon has been studied for various boron concentrations, annealing times and annealing temperatures by proposing a kinetic model based on thermodynamical concepts. A computer simulation technique has been used to determine the grain boundary self-diffusion of silicon atoms. Our theoretical predictions have been compared with available experimental reports. This model has been extended to evaluate the grain size distribution in boron doped polysilicon for various dopant concentrations, annealing times and temperatures. The results are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Y. W. Seto, J. Appl. Phys.46, 5247 (1975).

    Article  CAS  Google Scholar 

  2. G. Baccarani, B. Ricco and G. Spakini, J. Appl. Phys.49, 5565 (1978).

    Article  CAS  Google Scholar 

  3. H. Gleiter, Acta. Metall.17, 853 (1969).

    Article  CAS  Google Scholar 

  4. D. Turnbull, Trans. Am. Inst. Min. Metall. Eng.191, 3 (1951).

    Google Scholar 

  5. D. G. Cole, P. Feltham and E. Gilliam, Proc. R. Soc.67, 131 (1954).

    Google Scholar 

  6. K. Lucke, G. Masing and P. Noiting, Z. Metallkd.15, 64 (1956).

    Google Scholar 

  7. K. Detert and K. Lücke ‘Influence of defined small Amounts of Impurities on the recrystallization of Aluminium. Brown University. #AFOS R-TN-56-103; AD-82016-March, 1956.

  8. Y. Wada and S. Nishimatsu, J. Electrochem. Soc.125, 1499 (1978).

    Article  CAS  Google Scholar 

  9. L. Mei, M. River, Y. Kwart and R. W. Dutton, J. Electrochem. Soc.129, 1791 (1982).

    Article  CAS  Google Scholar 

  10. C. V. Thomson and H. I. Smith, Appl. Phys. Lett.44, 603 (1984).

    Article  Google Scholar 

  11. L. Mei, M. River, Y. Kwart and R. W. Dutton, eds. H. R. Huff, R. J. Kriegler and Y. Takeishi, Semiconductor Silicon (1981), Electrochem. Soc., p. 1007.

  12. C. V. Thomson, J. Appl. Phys.58, 763 (1985).

    Article  Google Scholar 

  13. S. Kalainathan, R. Dhanasekaran and P. Ramasamy, Thin Solid Films163, 383 (1988).

    Article  CAS  Google Scholar 

  14. S. Kalainathan, R. Dhanasekaran and P. Ramasamy, J. Cryst. Growth (in press).

  15. M. Hillert, Acta. Metall.13, 227 (1965).

    Article  CAS  Google Scholar 

  16. D. J. Srolovitz, M. P. Anderson, G. S. Grest and P. S. Sahni, Acta. Metall.32, 1429 (1984).

    Article  CAS  Google Scholar 

  17. O. Hunderi and N. Ryum. Acta. Metall.27, 161 (1979).

    Article  Google Scholar 

  18. S. Sahni, D. J. Srolovitz, G. S. Grest, M. P. Anderson and S. A. Safran, Phys. Rev. B28, 2705 (1983).

    Article  CAS  Google Scholar 

  19. D. J. Srolovitz, M. P. Anderson, G. S. Grest and P. S. Sahni, Scr. Metal.17, 241 (1983).

    Article  CAS  Google Scholar 

  20. O. Hunderi and N. Ryum, J. Mat. Sci.15, 1104 (1980).

    Article  Google Scholar 

  21. I. M. Lifshitz and V. V. Slozov, Soviet Phys JETP.35, 331 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalainathan, S., Dhanasekaran, R. & Ramasamy, P. Grain growth mechanism in boron doped polycrystalline silicon. J. Electron. Mater. 19, 1135–1139 (1990). https://doi.org/10.1007/BF02651994

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02651994

Key words

Navigation