Gibbs energies of formation of chromium carbides


The carbon potentials corresponding to the two-phase mixtures Cr + Cr23C6, Cr23C6 + Cr7C3, and Cr7C3 + Cr3C2 in the binary system Cr-C were measured in the temperature range 973 to 1173 K by using the methane-hydrogen gas equilibration technique. Special precautions were taken to prevent oxidation of the samples and to minimize thermal segregation in the gas phase. The standard Gibbs energies of formation of Cr23C6, Cr7C3, and Cr3C2 were derived from the measured carbon potentials. These values are compared with those reported in the literature. The Gibbs energies obtained in this study agree well with those obtained from solid-state cells incorporating CaF2 and ThO2(Y2O3) as solid electrolytes and sealed capsule isopiestic measurements reported in the literature.

This is a preview of subscription content, log in to check access.


  1. 1.

    Binary Alloy Phase Diagrams, T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprazak, eds., ASM, Metals Park, OH, 1986, vol. 1.

    Google Scholar 

  2. 2.

    A.D. Kulkarni and W.L. Worrell:Metall. Trans., 1972, vol. 3, pp. 2363–70.

    Article  CAS  Google Scholar 

  3. 3.

    K.K. Kelley, F.S. Boericke, G.E. Moore, E.H. Huffman, and W.M. Bangert: U.S. Bureau of Mines Technical Report No. 662, U.S. Government Printing Office, Washington, DC, 1949.

    Google Scholar 

  4. 4.

    M. Gleiser:J. Phys. Chem., 1965, vol. 69, pp. 1771–72.

    Article  CAS  Google Scholar 

  5. 5.

    H. Kleykamp:Ber. Bunsenges. Phys. Chem., 1969, vol. 73, pp. 354–58.

    CAS  Google Scholar 

  6. 6.

    R.G. Coltters and G.R. Belton:Metall. Trans. B, 1984, vol. 15B, pp. 517–21.

    CAS  Google Scholar 

  7. 7.

    H. Mabuchi, N. Sano, and Y. Matsushita:Metall Trans., 1971, vol. 2, pp. 1503–05.

    CAS  Google Scholar 

  8. 8.

    S. Du, S. Seetharaman, and L.-I. Staffansson:Metall. Trans. B, 1989, vol. 20B, pp. 911–17.

    Google Scholar 

  9. 9.

    Y.J. Bhatt, R. Venkataramani, Y.S. Sayi, and S.P. Garg:Met, Mater. Processes, 1990, vol. 2 (1), pp. 49–58.

    CAS  Google Scholar 

  10. 10.

    V.I. Alekseev and L.A. Shwratsman:Fiz.-Khim. Osnovy Met. Protsessov, Komis. Po Fiz.-Khim. Osnovam Proizv Stali, 1964, pp. 414–21.

  11. 11.

    M. Small and E. Ryba:Metall. Trans. A, 1981, vol. 12A, pp. 1389–96.

    Google Scholar 

  12. 12.

    A.D. Mah: U.S. Bureau of Mines Technical Report No. 7217, U.S. Government Printing Office, Washington, DC, 1969.

    Google Scholar 

  13. 13.

    W.M. Dawson and F.R. Sale:Metall. Trans. A, 1977, vol. 8A, pp. 15–18.

    CAS  Google Scholar 

  14. 14.

    S. Anthonysamy: Master's Thesis, Indian Institute of Science, Bangalore, India, 1994.

    Google Scholar 

  15. 15.

    M.W. Chase, C.A. Davies, J.R. Dourey, D.J. Frury, R.A. McDonald, and A.N. Syverud:J. Phys. Chem. Ref. Data, 1985, vol. 14, pp. 535, 600, 652, 673, 684 and 928.

    Google Scholar 

  16. 16.

    S. Du:Scand. J. Metall, 1989, vol. 18, pp. 226–34.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Anthonysamy, S., Ananthasivan, K., Kaliappan, I. et al. Gibbs energies of formation of chromium carbides. Metall Mater Trans A 27, 1919–1924 (1996).

Download citation


  • Gibbs Energy
  • Material Transaction
  • CaF2
  • Chromium Carbide
  • Carbon Potential