Metallurgical and Materials Transactions A

, Volume 27, Issue 7, pp 1919–1924 | Cite as

Gibbs energies of formation of chromium carbides

  • S. Anthonysamy
  • K. Ananthasivan
  • I. Kaliappan
  • V. Chandramouli
  • P. R. Vasudeva Rao
  • C. K. Mathews
  • K. T. Jacob
Physical Chemistry

Abstract

The carbon potentials corresponding to the two-phase mixtures Cr + Cr23C6, Cr23C6 + Cr7C3, and Cr7C3 + Cr3C2 in the binary system Cr-C were measured in the temperature range 973 to 1173 K by using the methane-hydrogen gas equilibration technique. Special precautions were taken to prevent oxidation of the samples and to minimize thermal segregation in the gas phase. The standard Gibbs energies of formation of Cr23C6, Cr7C3, and Cr3C2 were derived from the measured carbon potentials. These values are compared with those reported in the literature. The Gibbs energies obtained in this study agree well with those obtained from solid-state cells incorporating CaF2 and ThO2(Y2O3) as solid electrolytes and sealed capsule isopiestic measurements reported in the literature.

References

  1. 1.
    Binary Alloy Phase Diagrams, T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprazak, eds., ASM, Metals Park, OH, 1986, vol. 1.Google Scholar
  2. 2.
    A.D. Kulkarni and W.L. Worrell:Metall. Trans., 1972, vol. 3, pp. 2363–70.CrossRefGoogle Scholar
  3. 3.
    K.K. Kelley, F.S. Boericke, G.E. Moore, E.H. Huffman, and W.M. Bangert: U.S. Bureau of Mines Technical Report No. 662, U.S. Government Printing Office, Washington, DC, 1949.Google Scholar
  4. 4.
    M. Gleiser:J. Phys. Chem., 1965, vol. 69, pp. 1771–72.CrossRefGoogle Scholar
  5. 5.
    H. Kleykamp:Ber. Bunsenges. Phys. Chem., 1969, vol. 73, pp. 354–58.Google Scholar
  6. 6.
    R.G. Coltters and G.R. Belton:Metall. Trans. B, 1984, vol. 15B, pp. 517–21.Google Scholar
  7. 7.
    H. Mabuchi, N. Sano, and Y. Matsushita:Metall Trans., 1971, vol. 2, pp. 1503–05.Google Scholar
  8. 8.
    S. Du, S. Seetharaman, and L.-I. Staffansson:Metall. Trans. B, 1989, vol. 20B, pp. 911–17.Google Scholar
  9. 9.
    Y.J. Bhatt, R. Venkataramani, Y.S. Sayi, and S.P. Garg:Met, Mater. Processes, 1990, vol. 2 (1), pp. 49–58.Google Scholar
  10. 10.
    V.I. Alekseev and L.A. Shwratsman:Fiz.-Khim. Osnovy Met. Protsessov, Komis. Po Fiz.-Khim. Osnovam Proizv Stali, 1964, pp. 414–21.Google Scholar
  11. 11.
    M. Small and E. Ryba:Metall. Trans. A, 1981, vol. 12A, pp. 1389–96.Google Scholar
  12. 12.
    A.D. Mah: U.S. Bureau of Mines Technical Report No. 7217, U.S. Government Printing Office, Washington, DC, 1969.Google Scholar
  13. 13.
    W.M. Dawson and F.R. Sale:Metall. Trans. A, 1977, vol. 8A, pp. 15–18.Google Scholar
  14. 14.
    S. Anthonysamy: Master's Thesis, Indian Institute of Science, Bangalore, India, 1994.Google Scholar
  15. 15.
    M.W. Chase, C.A. Davies, J.R. Dourey, D.J. Frury, R.A. McDonald, and A.N. Syverud:J. Phys. Chem. Ref. Data, 1985, vol. 14, pp. 535, 600, 652, 673, 684 and 928.Google Scholar
  16. 16.
    S. Du:Scand. J. Metall, 1989, vol. 18, pp. 226–34.Google Scholar

Copyright information

© The Minerals, Metals & Material Society 1996

Authors and Affiliations

  • S. Anthonysamy
    • 1
  • K. Ananthasivan
    • 1
  • I. Kaliappan
    • 1
  • V. Chandramouli
    • 1
  • P. R. Vasudeva Rao
    • 1
  • C. K. Mathews
    • 1
  • K. T. Jacob
    • 2
  1. 1.Indira Gandhi Centre for Atomic ResearchKalpakkamIndia
  2. 2.Department of MetallurgyIndian Institute of ScienceBangaloreIndia

Personalised recommendations