Skip to main content

Epsilon carbide precipitation during tempering of plain carbon martensite

Abstract

Epsilon carbide precipitation in steel martensite has been investigated by means of transmission electron microscopy. The first stage of tempering initiates with the nucleation of very fine ε-carbide particles on the closely spaced parallel line defects, the morphology being so-called “cross-hatched” ε-carbide needles. The ε-carbide particles which produce the well-defined dif-fraction patterns are related to the martensite matrix with a Pitsch and Schrader orientation relationship.[32] These particles subsequently grow into rods elongated in the direction parallel to the\(\langle 100\rangle _\alpha \parallel \langle 11\bar 20\rangle _\varepsilon \) within the matrix. The final reaction in the first stage is the rearrangement of ε-carbide rods into a disklike morphology. The e-carbide rods elongated in the 〈100〉ε di-rections coalesce on

planes in a raftlike manner, as in the case of those formed in the quench-aged low-carbon ferrite, the tetragonality of martensite being completely lost. Although the deviation from hexagonal symmetry about the [0001]ε axis exists, no evidence of orthorhombic η-carbide formation was obtained.

This is a preview of subscription content, access via your institution.

References

  1. V.I. Izotov and L.M. Utevskiy:Fiz. Metal. Metalloved., 1968, vol. 25, pp. 98–110.

    CAS  Google Scholar 

  2. M. Kusunoki (Ne'e Toyoshima) and S. Nagakura:J. Appl. Crystallogr., 1981, vol. 14, pp. 329–36.

    Article  CAS  Google Scholar 

  3. S. Nagakura, Y. Hirotsu, M. Kusunoki, T. Suzuki, and Y. Nakamura:Metall. Trans. A, 1983, vol. 14A, pp. 1025–31.

    Google Scholar 

  4. Jean-Marie R. Génin:Metall. Trans. A, 1987, vol. 18A, pp. 1371–88.

    Google Scholar 

  5. K.A. Taylor, L. Chang, G.B. Olson, G.D.W. Smith, M. Cohen, and J.B. Vandersande:Metall. Trans. A, 1989, vol. 20A, pp. 2717–37.

    CAS  Google Scholar 

  6. K.H. Jack:J. Iron Steel Inst., 1951, vol. 169, pp. 26–35.

    CAS  Google Scholar 

  7. F.E. Werner, B.L. Averbach, and Morris Cohen:Trans. ASM, 1957, vol. 49, pp. 823–41.

    Google Scholar 

  8. M.G.H. Wells:Acta Metall., 1964, vol. 12, pp. 389–99.

    Article  CAS  Google Scholar 

  9. E. Tekin and P.M. Kelly: inPrecipitation front Iron-base Alloys, G.R. Speich and J.B. Clark, eds., AIME, Warrendale, PA, 1965, pp. 173–229.

    Google Scholar 

  10. P. Fau and R. Faivre:C.R. Acad. Sci. Paris, 1967, vol. 264, S'erie C, pp. 1916–19.

    CAS  Google Scholar 

  11. S. Murphy and J.A. Whiteman:Metall. Trans., 1970, vol. 1, pp. 843–48.

    CAS  Google Scholar 

  12. Y. Ohmori, A.T. Davenport, and R.W.K. Honeycombe:Trans. Iron Steel Inst. Jpn., 1972, vol. 12, pp. 112–17.

    CAS  Google Scholar 

  13. C. Servant and G. Cizeron:Mater. Sci. Eng., 1989, vol. Al17, pp. 175–89.

    Google Scholar 

  14. M. Cohen:Trans. ASM, 1949, vol. 41, p. 35.

    Google Scholar 

  15. S. Oketani, S. Hitomi, and S. Nagakura:J. Jpn. Inst. Met., 1962, vol. 26, pp. 494–98.

    Google Scholar 

  16. Y. Ohmori and S. Sugisawa:Trans. Jpn. Inst. Met., 1971, vol. 12, pp. 170–78.

    CAS  Google Scholar 

  17. K.H. Jack:J. Iron Steel Inst., 1951, vol. 170, pp. 248–55.

    Google Scholar 

  18. A.J. Baker, P.M. Kelly, and J. Nutting:Electron Microscopy and Strength of Crystals, Interscience, New York, NY, 1961, pp. 899–914.

    Google Scholar 

  19. S. Nagakura, T. Suzuki, and M. Kusunoki:Trans. Jpn. Inst. Met., 1981, vol. 22, pp. 699–709.

    CAS  Google Scholar 

  20. Y. Nakamura, T. Mikami, and S. Nagakura:Trans. Jpn. Inst. Met., 1985, vol. 26, pp. 876–85.

    CAS  Google Scholar 

  21. Y. Hirotsu and S. Nagakura:Acta Metall., 1972, vol. 20, pp. 645–55.

    Article  CAS  Google Scholar 

  22. Y. Hirotsu and S. Nagakura:Trans. Jpn. Inst. Met., 1974, vol. 15, pp. 129–34.

    CAS  Google Scholar 

  23. K. Shimizu and H. Okamoto:Trans. Jpn. Inst. Met., 1974, vol. 15, pp. 193–99.

    CAS  Google Scholar 

  24. M. Doi and Z. Nishiyama:J. Jpn. Inst. Met., 1958, vol. 17, pp. 487–91.

    Google Scholar 

  25. Y. Tanaka and K. Shimizu:Trans. Jpn. Inst. Met., 1981, vol. 22, pp. 779–88.

    CAS  Google Scholar 

  26. S.R. Keown and D.J. Dyson:J. Iron Steel Inst., 1966, vol. 204, pp. 832–36.

    Google Scholar 

  27. Z. Nishiyama:Sci. Rep. Tohoku Univ., 1934, vol. 23, pp. 637–64.

    CAS  Google Scholar 

  28. G. Wassermann:Arch. Eisenhuettenwes., 1933, vol. 6, pp. 347–51.

    CAS  Google Scholar 

  29. Sheree H. Chen and J.W. Morris, Jr.:Metall. Trans. A, 1977, vol. 8A, pp. 19–26.

    CAS  Google Scholar 

  30. E.C. Bain:Trans. TMS-AIME, 1924, vol. 70, pp. 25–35.

    Google Scholar 

  31. Y. Ohmori and I. Tamura:Metall. Trans. A, 1992, vol. 23A, pp. 2145–56.

    Google Scholar 

  32. W. Pitsch and A. Schrader:Arch. Eisenhuettenwes., 1958, vol. 29, pp. 715–21.

    CAS  Google Scholar 

  33. M. Kusunoki and S. Nagakura:Trans. Jpn. Inst. Met., 1984, vol. 25, pp. 517–22.

    CAS  Google Scholar 

  34. M. Doi, T. Miyazaki, and T. Wakatsuki:Mater. Sci. Eng., 1984, vol. 67, pp. 247–53.

    Article  CAS  Google Scholar 

  35. M. Doi, T. Miyazaki, and T. Wakatsuki:Mater. Sci. Eng., 1985, vol. 74, pp. 139–45.

    Article  CAS  Google Scholar 

  36. F.W. Langer:Met. Sci. J., 1968, vol. 2, pp. 59–66.

    Article  CAS  Google Scholar 

  37. H.W. Wagenblast and R. Glenn:Metall. Trans., 1970, vol. 1, pp. 2299–2304.

    Article  CAS  Google Scholar 

  38. K.A. Taylor, G.B. Olson, M. Cohen, and J.B. Vandersande:Metall. Trans. A, 1989, vol. 20A, pp. 2749–65.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ohmori, Y., Tamura, I. Epsilon carbide precipitation during tempering of plain carbon martensite. Metall Mater Trans A 23, 2737–2751 (1992). https://doi.org/10.1007/BF02651753

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02651753

Keywords

  • Ferrite
  • Martensite
  • Metallurgical Transaction
  • Orientation Relationship
  • Select Area Electron Diffraction Pattern