Skip to main content

Advertisement

Log in

Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone: Part I. Fractographic evidence

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Tensile, crack opening displacement (COD), blunt notch, and Charpy impact tests were used to investigate cleavage initiation in the intercritically reheated coarse-grained heat-affected zone (IC CG HAZ) of three steels. The steels were chosen to provide different distributions and morphologies of MA (high-carbon martensite with some retained austenite) particles within the IC CG HAZ structure. Observation of minimum impact toughness values for the IC CG HAZ was found to be associated with a particular microstructure containing a near-connected grain boundary network of blocky MA particles, the MA particles being significantly harder than the internal grain microstructure. The initiation mechanism for this structure was determined to be from a combination of an overlap of residual transformational induced stress fields, due to the formation of the MA particles, between two closely spaced particles and stress concentration effects resulting from debonding of the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Schofield and R.T. Weiner:Met. Constr. 1974, vol. 6, pp. 45–47.

    CAS  Google Scholar 

  2. T. Boniszewski and T. Keeler:Met. Constr. 1984, vol. 16, pp. 608–17.

    CAS  Google Scholar 

  3. Welding Research Bulletin 331, Welding Research Council, 1988, Feb.

  4. E. Smith and R.L. Apps:Met. Constr. 1971, vol. 3, pp. 303–08.

    CAS  Google Scholar 

  5. O.M. Akselsen, Ø. Grong, and J.K. Solberg:Mater. Sci. Technol. 1987, vol. 3, pp. 649–55.

    CAS  Google Scholar 

  6. J.Y. Koo and A. Ozekcin: inConf. Proc. on Welding Metallurgy of Structural Steels, Denver, Co, J.Y. Koo, ed. TMS-AIME, Warrendale, PA, 1987, pp. 119–35.

    Google Scholar 

  7. T. Haze, S. Aihara, and H. Mabuchi: inProc. Int. Symp. of Accelerated Cooling of Rolled Steel, G.E. Ruddle and A.F. Crawley, eds., Pergamon Press, Oxford 1987, pp. 235–47.

    Google Scholar 

  8. K. Arimochi, R. Someyo, and K. Bessyo:Weld. Technol. Conf., Nov. 1988, paper no. 25, The Welding Institute, Cambridge, U.K., 1988.

    Google Scholar 

  9. K. Amano, J. Kudo, N. Itakura, and Y. Nakano:8th Int. Conf. on Offshore Mechanics and Arctic Engineering (OMAE), The Hague, Mar. 19–23, 1989, ASME, Fairfield, NJ, 1989, pp. 683–90.

    Google Scholar 

  10. T. Haze and S. Aihara:7th Int. Conf. on OMAE, Houston, TX, Feb. 7–12, 1988, ASME, Fairfield, NJ, 1988, pp. 515–23.

    Google Scholar 

  11. B.C. Kim, S. Lee, N.J. Kim, and D.Y. Lee:Metall. Trans. A. 1991, vol. 22A, pp. 139–49.

    CAS  Google Scholar 

  12. Ø. Grong and O.M. Akselsen:Met. Constr. 1986, vol. 18, pp. 557–62.

    CAS  Google Scholar 

  13. A.C. de Koning, J.D. Harston, K.D. Naylor, and R.K. Ohm:7th Int. Conf. on OMAE, Houston, TX, Feb. 7–12, 1988, ASME, Fairfield, NJ, 1988, pp. 161–79.

    Google Scholar 

  14. J.T. Bowker, J.T. McGrath, J.A. Gianetto, and M.W. Letts:Weld. Technol. Conf., Nov. 1988, paper no. 10, The Welding Institute, Cambridge, U.K., 1988.

    Google Scholar 

  15. R.M. Denys:Weld. Technol. Conf., Nov. 1988, paper no. 44, The Welding Institute, Cambridge, U.K., 1988.

    Google Scholar 

  16. M.R. Krishnadev, J.T. McGrath, J.T. Bowker, and S. Dionne: inConf. Proc. on Welding Metallurgy of Structural Steels, Denver, CO, J.Y. Koo, ed., TMS-AIME, Warrendale, PA, 1987, pp. 137–55.

    Google Scholar 

  17. R.E. Dolby and J.F. Knott:J. Iron Steel Inst., Nov. 1972, pp. 857–65.

  18. A.J. DeArdo:Can. Metall. Q., 1988, vol. 27 (2), pp. 141–54.

    CAS  Google Scholar 

  19. C. Ouchi, T. Okita, and S. Yamamoto:Trans. Iron Steel Inst. Jpn., 1982, vol. 22, pp. 608–16.

    Google Scholar 

  20. M. Shimizu, M. Hiromatsu, and H. Kaji:Trans. Iron Steel Inst. Jpn., 1986, vol. 26, pp. 790–97.

    CAS  Google Scholar 

  21. M.F. Mekkaway, K.A. El-Fawakhry, M.L. Mishreky, and M.M. Eissa:Mater. Sci. Technol., 1991, vol. 7, pp. 28–36.

    Google Scholar 

  22. N. Komatsubara, S. Watanabe, and H. Ohtani:Tetsu-to-Hagané, 1983, vol. 69 (8), pp. 975–82.

    CAS  Google Scholar 

  23. P. Heedman and A. Sjöström:Scand. J. Metall., 1982, vol. 11 (5), pp. 233–38.

    CAS  Google Scholar 

  24. S. Watanabe, K. Arimochi, N. Komatsubara, H. Yoshinaga, and S. Suzuki:The Sumitomo Search, 1986, no. 32, pp. 42–52.

  25. S. Yano, Y. Okamura, T. Inoue, K. Tanabe, S. Maehara, H. Muraoka, A. Toyofuku, and Y. Horii:Nippon Steel Tech. Rep., 1989, no. 42, pp. 20–32.

  26. H. Otani, S. Watanabe, N. Komatsubara, and K. Bessyo:Bull. Jpn. Inst. Metall., 1985, vol. 24 (5), pp. 427–29, (in Japanese).

    Google Scholar 

  27. G. Tither and J. Kewell:J. Iron Steel Inst., 1970, vol. 208, pp. 686–94.

    CAS  Google Scholar 

  28. G. Tither, J. Kewell, and M.G. Frost:Proc. Iron Steel Inst. Conf. on Effect of Second-Phase Particles on the Mechanical Properties of Steel, The Iron and Steel Institute, London, U.K., 1971, pp. 157–65.

    Google Scholar 

  29. Y. Iwasaki, K. Kobayashi, K. Ueno, and Y. Koyama:Trans. Iron Steel Inst. Jpn., 1985, vol. 25, pp. 1059–68.

    CAS  Google Scholar 

  30. K. Bessyo, S. Watanabe, H. Uchimura, K. Kawai, and N. Watanabe:The Sumitomo Search, 1988, Nov. (37), pp. 29–42.

  31. Y. Komizo and Y. Fukuda:Suiyokwai-Shi (Trans. Min. Metall. Assoc. Kyoto), 1987, vol. 20 (9), pp. 621–29.

    CAS  Google Scholar 

  32. C.L. Davis and J.E. King:Mater. Sci. Technol., 1993, vol. 9, pp. 8–15.

    CAS  Google Scholar 

  33. Y. Sakuma, O. Matsumura, and H. Takechi:Metall. Trans. A, 1991, vol. 22A, pp. 489–98.

    CAS  Google Scholar 

  34. N.K. Balliger and T. Gladman:Met. Sci., 1981, vol. 15, pp. 95–108.

    Article  CAS  Google Scholar 

  35. K.R. Kinsman, G. Das, and R.F. Hehemann:Acta. Metall., 1977, vol. 25, pp. 359–65.

    Article  CAS  Google Scholar 

  36. W.C. Leslie and R.L. Miller:Trans. ASM, 1964, vol. 57, pp. 972–81.

    CAS  Google Scholar 

  37. C.A.N. Lanzillotto and F.B. Pickering:Met. Sci., 1982, vol. 16, pp. 371–83.

    Article  CAS  Google Scholar 

  38. C.L. Davis and J.E. King:Conf. Proc. 8th Int. Conf. on Fracture, June 8–14, 1993, Kiev, Ukraine, 1993.

  39. T.W. Lau, J.T. Bowker, and R.B. Lazor:Proc. Int. Conf. on Welding for Challenging Environments, Pergamon Press, 1984, Toronto, ON, 1985, Welding Institute of Canada.

    Google Scholar 

  40. R.E. Dolby:Met. Constr. 1972, vol. 4, pp. 59–63.

    CAS  Google Scholar 

  41. C. Thaulow and A.J. Paauw:Weld. Technol. Conf. Nov. 1988, paper no. 24, The Welding Institute, Cambridge, U.K., 1988.

    Google Scholar 

  42. C. Thaulow, A.J. Paauw, and K. Guttormsen:Weld. J., 1987, vol. 66 (9), pp. 266s-79s.

    Google Scholar 

  43. J.T. McGrath, J.A. Gianetto, R.F. Orr, and M.W. Letts:Can. Metall. Q., 1986, vol. 25 (4), pp. 349–56.

    CAS  Google Scholar 

  44. J.R. Griffith and D.R.J. Owen:J. Mech. Phys. Solids, 1971, vol. 19, pp. 419–31.

    Article  Google Scholar 

  45. F.S. LePera:Metallography, 1979, vol. 12, pp. 263–68.

    Article  CAS  Google Scholar 

  46. M. Koso, M. Miura, and Y. Ohmori:Met. Technol., 1981, Dec, pp. 482–87.

  47. K. Uchino and Y. Ohno:6th Int. Conf. on OMAE, March 1–6, 1987, Houston, TX, ASME, Fairfield, NJ, 1987, pp. 159–65.

    Google Scholar 

  48. S. Aihara and T. Haze:J. Met., 1987, vol. 39 (10), p. 7.

    Google Scholar 

  49. S. Aihara and K. Okamoto:Proc. Int. Conf. on the Metallurgy, Welding and Qualification of Microalloyed (HSLA) Steel Weldments, Nov. 6–8, 1990, ASME, Houston, TX, pp. 402–25.

    Google Scholar 

  50. J.H. Chen, Y. Kikuta, T. Araki, M. Yoneda, and Y. Matsuda:Acta Metall., 1984, vol. 32 (10), pp. 1779–88.

    Article  CAS  Google Scholar 

  51. M. Nakanishi, Y. Komizo, and Y. Fukada:The Sumitomo Search, 1986, Nov. (33), pp. 22–34.

  52. S. Lee, B.C. Kim, and D.Y. Lee:Scripta Metall., 1989, vol. 23, pp. 995–1000.

    Article  CAS  Google Scholar 

  53. N.J. Kim and G. Thomas:Metall. Trans. A, 1981, vol. 12A, pp. 483–89.

    Google Scholar 

  54. X.J. He, N. Terao, and A. Berghezan:Met. Sci., 1984, vol. 18, pp. 367–73.

    Article  CAS  Google Scholar 

  55. A.F. Szewczyk and J. Gurland:Metall. Trans. A, 1982, vol. 13A, pp. 1821–26.

    Google Scholar 

  56. H.P. Shen, T.C Lei, and J.Z. Liu:Mater. Sci. Technol., 1986, vol. 2, pp. 28–33.

    CAS  Google Scholar 

  57. A.R. Marder:Metall. Trans. A, 1982, vol. 13A, pp. 85–92.

    CAS  Google Scholar 

  58. J.Y. Koo and G. Thomas:Scripta Metall., 1979, vol. 13, pp. 1141–45.

    Article  CAS  Google Scholar 

  59. D.A. Porter and K.E. Easterling:Phase Transformations in Metals and Alloys, 1st ed., Van Nostrand Reinhold, Cornwall, UK, 1981, pp. 382–91.

    Google Scholar 

  60. R. Stevenson: inProc. Conf. on Formable HSLA and Dual Phase Steel, A.T. Davenport, ed., TMS-AIME, Warrendale, PA, 1979, pp. 101–09.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, C.L., King, J.E. Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone: Part I. Fractographic evidence. Metall Mater Trans A 25, 563–573 (1994). https://doi.org/10.1007/BF02651598

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02651598

Keywords

Navigation