Skip to main content
Log in

The direct determination of the vacancy concentration andP-T phase diagram of Hg0.8Cd0.2Te and Hg0.6Cd0.4Te by dynamic mass-loss measurements

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A modified mass-loss measurement technique is employed, for the direct,in- situ determination of the metal vacancy formation in (Hg1x2212;itxCd x )1−y Te y (s) withx = 0.2 and 0.4. Forx = 0.2, the metal vacancy concentrations are determined between 336 and 660° C for three different compositions(y) within the homogeneity region and range from 2.4 to6.8 x 1019cm−3. The enthalpy of formation of a singly-ionized metal vacancy is derived to be between 0.17 and 0.45 eV depending upon the deviation from stoichiometry (compositiony). Forx= 0.4, three samples of different y-values give the metal vacancy concentrations from 1.9 to 5.5 x 1019cm−3 between 316 and 649° C, and the enthalpy of vacancy formation between 0.25 and 0.40 eV. Compared to the recent data on HgTe(s), these experimental results show a slight but significant decrease in the enthalpy of vacancy formation from HgTe to Hg0.8Cd0.2Te, which supports theoretical predictions of the bond weakening effect of Cd for the latter alloy system. Based on the simultaneously determined equilibrium Hg partial pressures within the homogeneity range, the vacancy concentration-partial pressure isotherms are constructed. The Hg partial pressures are also measured along the three-phase boundaries of the solid solutions of bothx = 0.2 and 0.4, and these are in close agreement with published data obtained by optical absorption measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. D. Lawson, S. Nielson, E. H. Putley, and A. S. Young, J. Phys. Chem. Solids9, 325 (1959).

    Article  CAS  Google Scholar 

  2. J. L. Schmit, J. Cryst. Growth65, 249 (1983).

    Article  CAS  Google Scholar 

  3. M. A. Herman and M. Pessa, J. Appl. Phys.57, 2671 (1985).

    Article  CAS  Google Scholar 

  4. H. Wiedemeier and D. Chandra, Z. Anorg. Allg. Chem.488, 137 (1982).

    Article  CAS  Google Scholar 

  5. H. Wiedemeier and A. E. Uzpurvis, J. Electrochem. Soc.130, 252 (1983).

    Article  CAS  Google Scholar 

  6. H. Wiedemeier, A. E. Uzpurvis, and D. C. Wang, J. Cryst. Growth65, 474 (1983).

    Article  CAS  Google Scholar 

  7. H. Wiedemeier and A. E. Uzpurvis, Z. Anorg. Allg. Chem.510, 199 (1984).

    Article  CAS  Google Scholar 

  8. D. Chandra and H. Wiedemeier,ibid. 545, 98 (1987).

    Article  CAS  Google Scholar 

  9. H. Wiedemeier and D. Chandra,ibid. 545, 109 (1987).

    Article  CAS  Google Scholar 

  10. H. Wiedemeier and W. Palosz, J. Cryst. Growth96, 933 (1989).

    Article  CAS  Google Scholar 

  11. P. W. Kruse, in “Semiconductors and Semimetals”18, p. 1, Eds. R. K. Willardson and A. C. Beer, Academic Press, New York (1981).

    Google Scholar 

  12. H. R. Vydyanath, J. Electrochem. Soc.128, 2609 (1981).

    Article  CAS  Google Scholar 

  13. R. A. Reynolds, M. J. Brau, H. Kraus, and R. T. Bate, J. Phys. Chem. Solids32, Suppl. 1, 511 (1971).

    Google Scholar 

  14. H. R. Vydyanath, J. Danovan, and D. A. Nelson, J. Electro- chem. Soc.128, 2625 (1981).

    Article  CAS  Google Scholar 

  15. J. L. Schmit and E. L. Stelzer, J. Electron. Mater.7, 65 (1978).

    CAS  Google Scholar 

  16. D. T. Cheung, J. Vac. Sci. Tech.A3, 128 (1985).

    Google Scholar 

  17. S. S. Chern, H. R. Vydyanath, and F. A. Kröger, J. Solid State Chem.14, 33 (1975).

    Article  CAS  Google Scholar 

  18. S. S. Chern and F. A. Kröger,ibid. 14, 44 (1975).

    Article  CAS  Google Scholar 

  19. Y. G. Sha and H. Wiedemeier, J. Electron. Mater.19, 159 (1990).

    CAS  Google Scholar 

  20. J. H. E. Jeffes and T. N. R. Marples, J. Cryst. Growth17, 46 (1972).

    Article  CAS  Google Scholar 

  21. J. P. Schwartz, T. Tung, and R. F. Brebrick, J. Electrochem. Soc.128, 438 (1981).

    Article  CAS  Google Scholar 

  22. T. Tung, L. Golonka, and R. F. Brebrick,ibid. 128, 451 (1981).

    Article  CAS  Google Scholar 

  23. H. Wiedemeier, S. B. Trivedi, R. C. Whiteside, and W. Pa- Losz,ibid. 133, 2399 (1986).

    Article  CAS  Google Scholar 

  24. H. Wiedemeier and C. L. Chang, J. Less-Common Metals137, 375 (1988).

    Article  Google Scholar 

  25. J. C. Wooley and B. Ray, J. Phys. Chem. Solids13, 151 (1960).

    Article  Google Scholar 

  26. R. F. Brebrick, C.-H. Su, and P.-K. Liao, in “Semiconductors and Semimetals”19, p. 171, Eds.R. K. Willardson and A. C. Beer, Academic Press, New York (1983).

    Google Scholar 

  27. S. Sugawara, T. Sato, and T. Minamiyama, Bull. JSME5, 711 (1962).

    CAS  Google Scholar 

  28. A. Sher, A.-B. Chen, W. E. Spicer, and C.-K. Shih, J. Vac. Sci. Tech.A3, 105 (1985).

    Google Scholar 

  29. K. C. Haas and D. Vanderbilt,ibid. A5, 3019 (1987).

    Google Scholar 

  30. H. Rodot, R. Triboulet, and A. Hruby, in “Lattice Defects in Semiconductors,” p. 238, ed. R. R. Hasiguti, Univ. Tokyo Press, Tokyo (1968).

    Google Scholar 

  31. C. L. Wang, S. Wu, and D. S. Pan, J. Vac. Sci. Tech.A1, 1631 (1983).

    Google Scholar 

  32. F. Bailly, in “Lattice Defects in Semiconductors,” p. 231, ed. R. R. Hasiguti, Univ. Tokyo Press, Tokyo (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiedemeier, H., Sha, Y.G. The direct determination of the vacancy concentration andP-T phase diagram of Hg0.8Cd0.2Te and Hg0.6Cd0.4Te by dynamic mass-loss measurements. J. Electron. Mater. 19, 761–771 (1990). https://doi.org/10.1007/BF02651382

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02651382

Keywords

Navigation