Skip to main content
Log in

Defect microstructure in low temperature epitaxial silicon grown by RPCVD

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Defect characterization of epitaxial silicon films grown by low temperature remote plasmaenhanced chemical vapor deposition (RPCVD) under various conditions is discussed. The film morphology and crystallinity have been examined by defect etching/Nomarski optical microscopy and transmission electron microscopy. Prior to epitaxial growth, anex situ wet chemical clean and anin situ remote hydrogen plasma clean were performed to remove the native oxide as well as other surface contaminants such as carbon. A damage-free (100) Si surface with extremely low concentrations of carbon and oxygen as confirmed byin situ Auger electron spectroscopy can be achieved using this cleaning technique at temperatures as low as 250°. Low temperature Si homoepitaxy was achieved by RPCVD on lightly doped (100) Si substrates. Growth parameters such as silane flow rate (partial pressure), chamber pressure, and substrate temperature were varied during epitaxial growth to investigate the dependence of film quality on these parameters. For comparison,in situ remote hydrogen plasma and epitaxial growth were also performed on heavily dopedp-type (100) Si substrates. Finally, the results of epitaxial growth at temperatures as low as 150° are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. S. Meyerson, Appl. Phys. Lett. 48, 797 (1986).

    Article  CAS  Google Scholar 

  2. Y. Ota, Thin Solid Film 106, 1 (1983).

    Article  Google Scholar 

  3. T. Donahue and R. Reif, J. Appl. Phys. 57, 2757 (1985).

    Article  CAS  Google Scholar 

  4. T. Ohmi, K. Matsudo, T. Shibata, T. Ichikawa, and H. Iwabuchi, Appl. Phys. Lett. 53, 364 (1988).

    Article  CAS  Google Scholar 

  5. P. D. Richard, R. J. Markunas, G. Lucovsky, G. G. Fountain,A. N. Mansour and D. V. Tsu, J. Vac. Sci. Technol. A3, 867 (1985).

    Google Scholar 

  6. L. Breaux, B. Anthony, T. Hsu, S. Banerjee, and A. Tasch, Adv. Mat. Conf., Mat. Res. Soc, Denver, CO (March 1989).

  7. B. Anthony, L. Breaux, T. Hsu, S. Banerjee and A. Tasch,J. Vac. Sci. Technol. B7, 621 (1989).

    Google Scholar 

  8. P. O. Hahn and M. Henzler, J. Appl. Phys. 52, 4122 (1981).

    Article  CAS  Google Scholar 

  9. D. B. Fenner, D. K. Biegelsen and R. D. Bringans, J. Appl. Phys. 66, 419 (1989).

    Article  CAS  Google Scholar 

  10. Vance D. Archer, J. Electrochem. Soc. 2074 (1982).

  11. L. M. Garverick, J. H. Comfort, T. R. Yew, R. Reif, F.A. Baiocchi and H. S. Luftman, J. Appl. Phys. 62, 3398 (1987).

    Article  CAS  Google Scholar 

  12. S. J. Jeng, G. S. Oehrlein and G. J. Scilla, Appl. Phys. Lett. 53, 1735 (1988).

    Article  CAS  Google Scholar 

  13. S. Veprek, M. Heintze, F. A. Sarott, M. Jurcik-Rajman and P. Willmott, Mater. Res. Soc. Symp. Proc. 118, 3 (1988).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, T., Breaux, L., Anthony, B. et al. Defect microstructure in low temperature epitaxial silicon grown by RPCVD. J. Electron. Mater. 19, 375–384 (1990). https://doi.org/10.1007/BF02651300

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02651300

Key words

Navigation