Skip to main content
Log in

The impact of MOCVD growth ambient on carrier transport, defects, and performance of CdTe/CdS heterojunction solar cells

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

CdTe solar cells were fabricated by depositing CdTe films on CdS/SnO2/glass substrates in various metalorganic chemical vapor deposition growth ambient with varying Te/Cd mole ratio in the range of 0.02 to 15. The short-circuit current density (Jsc) showed a minimum at a Te/Cd ratio of 0.1 and increased on both sides of this minimum. The open-circuit voltage (Voc) was found to be the highest for the Te-rich growth ambient (Te/Cd∼6)and was appreciably lower (600 mV as opposed to 720 mV) for the stoichiometric and the Cd-rich growth conditions. This pattern resulted in highest cell efficiency (12%) on Te-rich CdTe films. Auger electron spectroscopy revealed a high degree of atomic interdiffusion at the CdS/CdTe interface when the CdTe films were grown in the Te-rich conditions. It was found that the current transport in the cells grown in the Cd-rich ambient was controlled by the tunneling/interface recombination mechanism, but the depletion region recombination became dominant in the Te-rich cells. These observations suggest that the enhanced interdiffusion reduces interface states due to stress reduction or to the gradual transition from CdS to CdTe. The hypothesis of reduced defect density in the CdTe cells grown in the Te-rich conditions is further supported by the high effective lifetime, measured by time-resolved photoluminescence, and the reduced sensitivity of quantum efficiency to forward/light bias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.H. Bube and K.W. Mitchell,J. Electron. Mater. 22, 17 (1993).

    CAS  Google Scholar 

  2. P.V. Meyers,Solar Cells 24, 35 (1988).

    Article  CAS  Google Scholar 

  3. R.W. Birkmire, B.E. McCandless and J.E. Phillips,Proc. Polycrst. Thin Film Program Review Meeting, (Lakewood, CO: SERI, 1989), p. 77.

  4. T.L. Chu, S.S. Chu and S.T. Ang,J. Appl. Phys. 64, 1233 (1988).

    Article  CAS  Google Scholar 

  5. N. Suyama, T. Arita, Y. Nishiyama, N. Ueno, S. Kitamura and M. Murozono,Proc. 21st IEEE Photovolt. Spec. Conf. (New York: IEEE, 1990), p. 498.

  6. J. Skarp, Y. Koskinen, S. Lindfors, A. Rautianinen and T. Suntola,Proc. 10th EC Photovolt. Solar Energy Conf. (Netherlands: Kluwer Academic, 1991), p. 567.

    Google Scholar 

  7. A. Rohatgi, H.C. Chou, A. Bhat and R. Sudharsanan,AIP Conf. Proc. 268: Photovoltaic Advanced Research and Development Project (New York: AIP, 1992), p. 243.

    Google Scholar 

  8. S.A. Ringel, A.W. Smith, M.H. MacDougal and A. Rohatgi,J. Appl. Phys. 70, 881 (1991).

    Article  CAS  Google Scholar 

  9. J.R. Sites, Colorado State Univ. Annual Report to NREL:Role of Polycrstallinity in CdTe and CdInSe2Photovoltaic Cells (1992), p. 6.

  10. I. Clemminck, M. Burgelman, M. Casteleyn, J. De Poorter and A. Vervaet,Proc 22nd IEEE Photovolt. Spec. Conf. (New York: IEEE, 1991), p. 1114.

    Google Scholar 

  11. M. Aven and J.S. Prener,Physics and Chemistry of II-VI Compounds (New York: Wiley, 1967), p. 254.

    Google Scholar 

  12. A. Rohatgi, S.A. Ringel, R. Sudharsanan and H.C. Chou,Proc. 22nd IEEE Photovolt. Spec. Conf. (New York: IEEE, 1991), p. 962.

    Google Scholar 

  13. R.W. Birkmire, S S. Hegedus, B.E. McCandless, J E. Phillips, T.W.F. Russell, W.N. Shafarman, S. Verma and S. Yamanaka,AIP Conf. Proc. 268: Photovoltaic Advanced Research and Development Project (New York: AIP, 1992), p. 212.

    Google Scholar 

  14. R.R. Potter, C. Eberspacher and L.B. Fabick,Proc. 18th IEEE Photovolt. Spec. Conf (New York: IEEE, 1985), p. 1659.

    Google Scholar 

  15. M. Eron and A. Rothwarf,J. Appl. Phys. 57, 2275 (1985).

    Article  CAS  Google Scholar 

  16. A. Rothwarf,IEEE Trans. Electron. Dev. 29, 1513 (1982).

    Google Scholar 

  17. J.B. Yoo, A.L. Fahrenbruch and R.H. Bube,J. Appl. Phys. 68, 4694(1990).

    Article  CAS  Google Scholar 

  18. S.A. Ringel, Ph.D. Thesis, Georgia Institute of Technology (1991), p. 38.

  19. W.A. Miller and L.C. Olsen,IEEE Trans. Electron. Dev. 31, 654(1984).

    Google Scholar 

  20. A.L. Fahrenbruch and R.H. Bube,Fundamentals of Solar Cells (New York: Academic Press, 1983), p. 147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, H.C., Rohatgi, A. The impact of MOCVD growth ambient on carrier transport, defects, and performance of CdTe/CdS heterojunction solar cells. J. Electron. Mater. 23, 31–37 (1994). https://doi.org/10.1007/BF02651264

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02651264

Key words

Navigation