Advertisement

Acta Seismologica Sinica

, Volume 9, Issue 2, pp 271–278 | Cite as

Inversion ofQ value structure beneath the Tibet Plateau

  • Jian-Ping Wu
  • Rong-Sheng Zeng
Article

Abstract

A total of 11 earthquakes with 15 Rayleigh wave paths, recorded at 11 broadband digital PASSCAL seismometers installed in the Tibet Plateau by the Sino-U.S. joint research group, were used to determine the phase velocity and attenuation coefficient of surface waves in periods of 10–130 s. The average shear wave velocity and quality factor {ie271-1} structures in the crust and upper mantle were obtained in this region. The result shows the average {ie271-2} is low and there exists a high attenuation ({ie271-3}=93–141) layer in the crust. The depth range of the low {ie271-4} value layer (16–42 km) is consistent with the range of low velocity layer (21–51 km) in the crust. Below 63 km in the lower crust, {ie271-5} decreases with depth from 114 to 34 at depth of 180 km. The low shear wave velocity and low value of {ie271-6} at the same depth range in the crust indicate that the rocks in the range is probably melted or partially melted. According to the shear wave velocity structure, the average thickness of the crust is about 71 km and a clear velocity discontiniuty appears at the depth of 51 km. The low-velocity zone (4. 26 km/s) at depth of 96–180 km may be corresponding to the asthenosphere.

Key words

Rayleigh wave phase velocity shear wave velocity structure Tibet plateau attenuation {ie271-7} structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aki, K., 1980. Scattering and attenuation of shear waves in the lithosphere.J. Geophys. Res.,85(B11): 6496–6504.Google Scholar
  2. Al-Khatib, H. H. and Mitchell, B. J., 1991. Upper mantle anelasticity and tectonic evolution of the western United States from surface wave attenuation.J. Geophys. Res.,96: 18129–18146.Google Scholar
  3. Bourjot, L. and Romanowicz, B., 1992. Crust and upper mantle tomography in Tibet using surface waves.Geophys. Res. Lett.,19: 881–884.Google Scholar
  4. Chen, G. Y., Zeng, R. S. and Wu, F. T.et al., 1992. The phase velocities of Rayleigh waves and the lateral variation of lithospheric structure in Tibetan Plateau.Acta Seismologica Sinica,14, Suppl.: 565–572 (in Chinese).Google Scholar
  5. Chen, X. J., 1985. Crust and upper mantle thermal structure of Xizang (Tibet) inferred from the mechanism of high heat flow observed in south-Xizang.Acta Geophysica Siinica,28(Suppl. I): 93–107 (in Chinese).Google Scholar
  6. Ding, Z. F., Zheng, R. S. and Wu, F. T., 1992. The Pn wave velocities and the relief of Moho in the Tibetan Plateau.Acta Seismologica Sinica,14, Suppl.: 592–599 (in Chinese).Google Scholar
  7. Feng, R., Zhu, J. S. and Ding, W. Y.et al., 1981. Crustal structure in China from surface waves.Acta Seismologica Sinica,3(4): 350–359 (in Chinese).Google Scholar
  8. Feng, R. and Zhou, H. N., 1985. CrustalQ-structure beneath the Tibetan Plateau.Acta Geophysica Sinica,28(Suppl. I): 174–184 (in Chinese).Google Scholar
  9. Li, H. J., 1983. Preliminary estimation to the crustal thermal state of the Himalayan region.Acta Geophysica Sinica,26(3): 249–255 (in Chinese).Google Scholar
  10. Mitchell, B. J., Xie, J. and Lin, W., 1993. Attenuation of multiphase surface waves in the Basin and Range Province, Part I: The fundamental mode.Seism Res Lett,64: 239–249.Google Scholar
  11. Mitchell, B. J. and Xie, J., 1994. Attenuation of multiphase surface waves in the Basin and Range Province, Part II: Inversion for crustal anelasticity.Geophys. J. Int.,116: 468–484.CrossRefGoogle Scholar
  12. Molnar, P., 1988. A review of geophysical constraints on the deep structure of the Tibetan Plateau, The Himalaya and the Karakoram, and their tectonic implications.Phil. Trans. R. Soc. Lond., A326: 33–38.CrossRefGoogle Scholar
  13. Patton, H., 1980. Crust and upper mantle structure of the Eurasian continent from the phase velocity andQ of surface waves.Rev. Geophys. Space Phys.,18: 605–625.Google Scholar
  14. Romanowicz, B., 1984. Pure path attenuation measurement of long-period waves across the Tibet plateau.Phys. Earth Planet. Inter.,36: 116–123.CrossRefGoogle Scholar
  15. Singh, D. D., 1982. Anelasticity of the crust and upper mantle beneath the Eurasian continent and the nearby regions from the inversion of Love and Rayleigh wave attenuation data.Geophys. J. R. astr. Soc.,71: 761–774.Google Scholar
  16. Singh, D. D. and Gupta, H. K., 1982.Q-structure beneath the Tibetan plateau from the inversion of Love- and Rayleigh-wave attenuation data.Phys. Earth Planet. Inter.,29: 183–194.CrossRefGoogle Scholar
  17. Sun, K. Z. and Teng, J. W., 1985. The velocity distribution in the crust and upper mantle beneath the Xizang (Tibetan) Plateau from long period surface waves.Acta Geophysica Sinica,28(Suppl. I): 54–59 (in Chinese).Google Scholar
  18. Teng, J. W., 1985. An introduction to geophysical study on the Tibetan Plateau Area.Acta Geophysica Sinica,28(Suppl. 1): 1–15 (in Chinese).Google Scholar
  19. The comprehensive scientific expedition to the Qinghai-Xizang Plateau, Chinese Academy of sciences, 1980. In:Geothermals beneath Xizang (Tibetan) Plateau, Beijing: Science Press. 107–118 (in Chinese).Google Scholar
  20. Yanovskaya, T. B. and Roslov, Y. V., 1989. Peculiarities of surface wave fields in laterally inhomogeneous media in the framework of ray theory.Geophys. J. Int.,99: 297–303.CrossRefGoogle Scholar
  21. Zhao, Z. and Zeng, R. S., 1992. The P and S wave velocity structures of the crust and upper mantle beneath Tibetan Plateau.Acta Seismologica Sinica,14, Suppl.: 573–579 (in Chinese).Google Scholar

Copyright information

© Acta Seismologica Sinica 1996

Authors and Affiliations

  • Jian-Ping Wu
    • 1
  • Rong-Sheng Zeng
    • 1
  1. 1.Institute of GeophysicsState Seismological BureauBeijingChina

Personalised recommendations