Advertisement

Acta Seismologica Sinica

, Volume 5, Issue 3, pp 481–492 | Cite as

Inversion of source parameters and attenuation of the Tangshan aftershocks

  • Yong Sun
  • Sihua Zheng
  • Shirong Mei
Article

Abstract

Source parameters and characteristics of regional attenuation of Tangshan aftershocks are studied by using digital records of Tangshan aftershocks. An inversion method of P wave spectra to reduce influence on the ambiguity in the estimates of parameters by the usual spectrum analysis method is developed. By testing with digital simulation data and applying to actual data, it is confirmed that the method is usable.

Source parameters of the Tangshan Luanxian area are obtained by using records of 35 earthquakes at 5 stations.Q values of P wave and high frequency decay rate γ of source spectrum at 5 stations are obtained. TheQ values range from 408 to 847, and the mean value is 520; whiley ranges from 1.54 to 3.22, and the mean value is 2.41.

In the studies of spectra of the micro-earthquakes in the Luanxian area, that stress drop increases with increasing earthquake moment is found.

Key words

source parameters attenuation scaling law 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aki, K., 1967. Scaling law of seismic spectrum,J. Geophys. Res.,72, 1217–1231.Google Scholar
  2. Aki, K., 1987. Magnitude-frequency relation for small earthquakes: A due to the origin off max of large earthquakes.J. Geophys. Res.,92, 1349–1355.Google Scholar
  3. Archulet, R. J., Cranswick, E., Mueller, C. and Spudish, P., 1982. Source parameters of the 1980 Mammoth Lakes, California earthquake sequence.J. Geophs. Res.,87, 4595–4607.Google Scholar
  4. Brune, J. N., 1970. Tectonic stress and spectra of seismic shear waves from earthquakes.J. Geophys. Res.,75, 4997–5009.Google Scholar
  5. Das, S. and Aki, K., 1977. Fault plane with barriers: A versatile earthquake model.J. Geophys. Res.,82, 5658–5670.CrossRefGoogle Scholar
  6. Dysart, P. S., Snoke, J. A. and Sacks, I. S., 1988. Source parameters and scaling relation for small earthquakes in the Matsushiro region, southwest Honshu, Japan.Bull. Seis. Soc. Amer.,78, 571–589.Google Scholar
  7. Geller, R. J., 1976. Scaling relation for earthquake source parameters and magnitudes.Bull. Seis. Soc. Amer.,66, 1501–1523.Google Scholar
  8. Fan, W., Yuan, Q. X., Hui, N. L., Li, S. L., Shi, L. K. and Zhang, X. P., 1987. Near-field observation in Luanxian region (in Chinese).North China Earthquake Science,5, 40–50.Google Scholar
  9. Garnet, M and Trong, P. H., 1980. Some medium properties at Friuli (Italy) from amplitude spectrum analysis: a possible change in time or space.Tectonics,88, 167–182.Google Scholar
  10. Hasegawa, H. S., 1983. Lg spectra of local earthquakes recorded by the eastern Canada telemetered network and spectral scaling.Bull. Seis. Soc. Amer.,73, 1041–1061.Google Scholar
  11. Hanks, T. C., 1982.f max.Bull. Seis. Soc. Amer.,72, 1867–1879.Google Scholar
  12. Hanks, T. C. and Wyss, M., 1972. The use of body wave spectra in the determination of seismic source parameters.Bull. Seis. Soc. Amer.,62, 561–589.Google Scholar
  13. Haar, L. C., Fletcher, J. B. and Mueller, C. S., 1984. The 1982 Eula, Arkansas, swarm and scaling of ground motion in the eastern United States.Bull. Seis. Soc. Amer.,74, 2463–2482.Google Scholar
  14. Joyner, W. B., 1987. Strong-motion seismology.Rev. Geophys.,25, 1149–1160.Google Scholar
  15. Johnson, L. R. and McEvilly, T. V., 1974. Near-field observations and source parameters of central California earthquakes,Bull. Seis. Soc. Amer.,64, 1855–1886.Google Scholar
  16. Nuttli, O. W., 1983. Average seismic-source parameter relations for mid-plate earthquakes.Bull. Seis. Soc. Amer.,73, 519–535.Google Scholar
  17. Masuda, T., 1982. Scaling relations for source parameters of micro-earthquakes in the northeastern part of Japan.Docterial Thesis, Tohoku Univ., 67–70.Google Scholar
  18. Ohsaki, Y., 1980. Introduction to spectral analysis of earthquakes (in Chinese translation). Seismological Press. Beijing. 180–186.Google Scholar
  19. Papageorgiou, A. S. and Aki, K., 1983b. A specific barrier model for the quantitative description of inhomogeneous faulting and prediction of strong ground motion. II. Application of the model.Bull. Seis. Soc. Amer.,73, 953–978.Google Scholar
  20. Papageorgiou, A. S., 1988. On two characteristic frequencies of acceleration spectra: patch corner frequency andf max.Bull. Seis. Soc. Amer.,78, 509–529.Google Scholar
  21. Papageorgiou, A. S. and Aki, K., 1983a. A specific barrier model for the quantitative description of inhomogeneous faulting and prediction of strong ground motion. I. Description of the model.Bull. Seis. Soc. Amer.,73, 693–722.Google Scholar
  22. Papageorgiou, A. S. and Aki, K., 1985. Scaling law of far-field spectra based on observed parameters of the specific barrier model.PAGEOPH,123, 353–374.CrossRefGoogle Scholar
  23. Rovelli, A., Bonamassa, O., Cocco, M., Bona, M. D. and Mazza, S., 1988. Scaling laws and spectral parameters of the ground motion in active extensional areas in Italy.Bull. Seis. Soc. Amer.,78, 530–560.Google Scholar
  24. Sato, T. and Hirasawa, T., 1973. Body wave spectra from propagating shear cracks.J. Phys. Earth,21, 415–431.Google Scholar
  25. Scherbaum, F. and Stoll, D., 1983. Source parameters and scaling laws of the 1978 Swabian Jura (Southwest Germany) aftershocks.Bull. Seism. Soc. Amer.,73, 1321–1343.Google Scholar

Copyright information

© Acta Seismologica Sinica 1992

Authors and Affiliations

  • Yong Sun
    • 1
  • Sihua Zheng
    • 2
  • Shirong Mei
    • 2
  1. 1.Seismological Bureau of Liaoning ProvinceShenyangChina
  2. 2.Center for Analysis and PredictionState Seismological BureauBeijingChina

Personalised recommendations