Advertisement

Acta Seismologica Sinica

, Volume 5, Issue 3, pp 459–467 | Cite as

Moment tensor inversion of some aftershocks of the April 18, 1985 Luquan earthquake of Yunnan Province, China

  • Jiangchuan Ni
  • Yuntai Chen
  • Ming Wang
  • Mingxi Wu
  • Jiayu Zhou
  • Peide Wang
  • Francis T. Wu
Article

Abstract

Based on the three component accelerograms, recorded at near-field distance by a temporary seismic network consisting of digital cassette tape recording accelerographs, the focal mechanisms of three aftershocks of the April 18, 1985, Luquan, Yunnan Province, China, earthquake ofM S=6.1, are calculated using seismic moment tensor inversion technique. The phases of direct P, S and converted SP waves in the displacement seismograms, produced by twice integrations of the observed accelerograms, are identified via forward calculation using Green’s functions for homogeneous semi-infinite elastic medium, and used in the inversion. The results of inversion show that a better fit of synthetic to the observed seismograms of direct as well as converted phases can be achieved if appropriate weighting functions are used in solving the over definite linear equations. While these aftershocks are of different magnitudes (M L=4.8, 3.2 and 3.5, respectively) and hypocentral locations, their focal mechanisms are very similar and consistent with that of the main shock. This feature demonstrates the intrinsic correlation between the occurrence of aftershocks and the seismogenic fault of main shock. Our experimentations show that using the near field accelerogram obtained from the digital seismic network with appropriate azimuthal coverage on the focal sphere, with the aid of even simple medium model, not only the shear dislocation source, but also the isotropic part and CLVD (compensated linear vector dipole) can be retrieved by the technique of moment tensor inversion.

Key words

Seismic moment tensor inversion earthquake mechanism Green’s functions fault plane solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aki, K. and Patton, H., 1978. Determination of seismic moment tensor using surface waves.Tectonophysics,49, 213–222.CrossRefGoogle Scholar
  2. Barker, J. S. and Longston, C. A., 1982. Moment tensor inversion of complex earthquakes.Geophys. J. R. astr. Soc.,68, 777–803.Google Scholar
  3. Cagniard, L., 1962.Reflection and Refraction of Progressive Seismic Waves. Translated and revised by Flinn, E. A. and Dix, C. H., McGraw-Hill, New York.Google Scholar
  4. De Hoop, A. T., 1960. A modification of Cagniard’s method for solving seismic pulse problems.Appl. Sci. Res., B8, 349–356.Google Scholar
  5. Dix, C. H., 1954. The method of Cagniard in seismic pulse problem.Geophysics,19, 722–738.CrossRefGoogle Scholar
  6. Doornbos, D. J., 1982. Seismic moment tensors and kinematic source parameters.Geophys. J. R. astr. Soc.,69, 235–251.Google Scholar
  7. Fitch, T. J., McCowan, D. W. and Shields, M. W., 1980. Estimation of the seismic moment tensor from teleseismic body wave data with applications to intraplate and mantle earthquakes.J. Geophys. Res.,85, 3817–3828.Google Scholar
  8. Gilbert, F. and Dziewonski, A. M., 1975. An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra.Phil. Trans, Roy. Soc. London,A278, 187–269.CrossRefGoogle Scholar
  9. Johnson, J. R., 1974. Green’s function for Lamb’s problem.Geophys. J. R. astr. Soc.,37, 99–131.Google Scholar
  10. Kanamori, H. and Given, J. W., 1981. Use of long-period surface waves for rapid determination of earthquake source parameters.Phys. Earth Planet. Int.,27, 8–31.CrossRefGoogle Scholar
  11. Lamb, H., 1904. On the propagation of tremors over the surface of an elastic solid.Phil. Trans. Roy. Soc., London,A203, 1–42.CrossRefGoogle Scholar
  12. Lanczos, C., 1961.Linear Differential Operators. Van Nostrand, London, 564pp.Google Scholar
  13. Lay, T., Given, J. W. and Kanamori, H., 1982. Long-period mechanism of the 8 November 1980 Eureka, California, earthquake.Bull. Seism. Soc. Amer.,72, 439–456.Google Scholar
  14. Longston, C. A., 1981. Source inversion of seismic waveforms: the Koyna, India, earthquakes of 13 September 1967.Bull. Seism. Soc. Amer.,71, 1–24.Google Scholar
  15. Mendiguren, J. A., 1977. Inversion of surface wave data in source mechanism studies.J. Geophys. Res.,82, 889–894.Google Scholar
  16. McCowan, D. W., 1976. Moment tensor representation of surface wave sources.Geophys. J. R. astr. Soc.,44, 595–599.Google Scholar
  17. Romanowicz, B., 1982. Moment tensor inversion of long-period Rayleigh waves: A new approach.J. Geophys. Res.,87, 5395–5407.CrossRefGoogle Scholar
  18. Stump, B. W. and Johnson, L. R., 1977. The determination of source properties by the linear inversion of seismograms.Bull. Seism. Soc. Amer.,67, 1489–1502.Google Scholar
  19. Stump, B. W. and Johnson, L. R., 1984. Near-field source characterization of contained nuclear explosion in tuff.Bull. Seism. Soc. Amer.,74, 1–26.Google Scholar
  20. Wu, M. X., Wang, M., Sun, C. C., Ke, Z. M., Wang, P. D., Chen, Y. T. and Wu, F. T., 1991. Accurate hypocenter determination of aftershocks of the 1985 Luquan earthquake.Acta Seismologica Sinica. 4, 181–191.Google Scholar

Copyright information

© Acta Seismologica Sinica 1992

Authors and Affiliations

  • Jiangchuan Ni
    • 1
  • Yuntai Chen
    • 1
  • Ming Wang
    • 1
  • Mingxi Wu
    • 1
  • Jiayu Zhou
    • 1
  • Peide Wang
    • 1
  • Francis T. Wu
    • 2
  1. 1.Institute of GeophysicsState Seismological BureauBeijingChina
  2. 2.Department of Geological Sciences and Environmental StudiesState University of New York at BinghamtonBinghamtonU. S. A.

Personalised recommendations