Skip to main content
Log in

Interactions of dislocations and antiphase (inversion) domain boundaries in III–V/IV heteroepitaxy

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The potential for interactions of misfit strain relieving dislocations with inversion-type antiphase domain boundaries is considered for III–V on group IV growth. The specific cases of GaAs grown on Si (001) and vicinal (001) substrates are examined. It is shown that threading dislocation densities for these growths should be unacceptably high due to obstruction of threading dislocation motion by the antiphase domain boundaries, even when the boundaries are eliminated shortly after the inception of GaAs layer growth. Cutting of the antiphase domain boundaries by mobile dislocations would require creation of new highenergy surface area. It is suggested that more successful routes would be growth of a strain-relieving buffer or growth on a {hhk} surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Georgakilas, J. Stoemenos, K. Tsagaraki, Ph. Komninou, N. Flevaris, P. Panayotatos and A. Christous,J. Mater. Res. 8 (8), 1908 (1993).

    CAS  Google Scholar 

  2. S.I. Molina, G. Aragón, R. García, Y. Gonzáles, L. Gonzáles and F. Briones,J. Electron. Mater. 22 (5), 567 (1993).

    Article  CAS  Google Scholar 

  3. M.M. Al-Jassim, T. Nishioka, Y. Itoh, A. Yamamoto and M. Yamaguchi,MRS Symp. Proc 116, 141 (1988).

    CAS  Google Scholar 

  4. H.L. Tsai and J.W. Lee,Appl. Phys. Lett. 51, 130 (1988).

    Article  Google Scholar 

  5. Z. Lilienthal-Weber,MRS Symp. Proc. 148, 205 (1989).

    Google Scholar 

  6. M. Yamaguchi, A. Yamamoto, M. Tachikawa, Y. Itoh and M. Suga,Appl. Phys. Lett. 53, 2293 (1988).

    Article  CAS  Google Scholar 

  7. S. L. Wright and H. Kroemer,Appl. Phys. Lett. 37, 210 (1980).

    Article  Google Scholar 

  8. R. Hull, J.C. Bean, R.E. Leibenguth and D.J. Werder,J. Appl. Phys. 65, 4723 (1989).

    Article  CAS  Google Scholar 

  9. W.Q. Li, P.K. Bhattacharya, S.H. Kwok and R. Merlin,J. Appl. Phys. 72 (7), 3129 (1992).

    Article  CAS  Google Scholar 

  10. E.A. Fitzgerald,JOM 41, 20 (1989).

    CAS  Google Scholar 

  11. L.B. Freund,J. Appl. Phys. 68, 2073 (1990).

    Article  Google Scholar 

  12. E.P. Kvam, D.M. Maher and C.J. Humphreys,J. Mater. Res. 5, 1900 (1990).

    CAS  Google Scholar 

  13. E.P. Kwam and F. Namavar,Appl. Phys. Lett. 58 (21), 2357 (1991).

    Article  Google Scholar 

  14. E.P. Kvam,Phil. Mag. Lett. 62, 167 (1990).

    Article  CAS  Google Scholar 

  15. O.L. Alerhand, A.N. Berker, J.D. Joannopoulos, D. Vanderbilt, R.J. Hamers and J.E. DemuthPhys. Rev. Lett. 64, 2406 (1990).

    Article  CAS  Google Scholar 

  16. J.J. deMiguel, C.E. Aumann, R. Kariotis and M.G. Lagally,Phys. Rev. Lett. 67, 2830 (1991).

    Article  CAS  Google Scholar 

  17. D. Vanderbilt and C. Lee,Phys. Rev. B 45(19), 11192 (1992).

    Article  CAS  Google Scholar 

  18. R. Hull and J.C. Bean,Critical Reviews in Solid State and Materials Science 17(6), 507 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kvam, E.P. Interactions of dislocations and antiphase (inversion) domain boundaries in III–V/IV heteroepitaxy. J. Electron. Mater. 23, 1021–1026 (1994). https://doi.org/10.1007/BF02650370

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02650370

Key words

Navigation