Metallurgical Transactions A

, Volume 22, Issue 12, pp 2993–3001 | Cite as

Characterization of hot deformation behavior of brasses using processing maps: Part II. β Brass and α-β brass

  • D. Padmavardhani
  • Y. V. R. K. Prasad
Mechanical Behaviour

Abstract

The hot deformation behaviors of β brass in the temperature range of 550°C to 800°C and α-β brass in the temperature range of 450°C to 800°C have been characterized in the strain rate range of 0.001 to 100 s−1 using processing maps developed on the basis of the Dynamic Materials Model. The map for β brass revealed a domain of superplasticity in the entire temperature range and at strain rates lower than 1 s−1, with a maximum efficiency of power dissipation of about 68 pct. The temperature variation of the efficiency of power dissipation in the domain is similar to that of the diffusion coefficient for zinc in β brass, confirming that the diffusion-accommodated flow controls the superplasticity. The material undergoes microstructural instability in the form of adiabatic shear bands and strain markings at temperatures lower than 700°C and at strain rates higher than 10 s−1. The map for α-β brass revealed a wide domain for processing in the temperature range of 550°C to 800°C and at strain rates lower than 1 s−1, with a maximum efficiency of 54 pct occurring at about 750°C and 0.001 s−1. In the domain, the α phase undergoes dynamic recrystallization and controls the hot deformation of the alloy, while the β phase deforms superplastically. At strain rates greater than 1 s−1, α-β brass exhibits microstructural instabilities manifested as flow rotations at lower temperatures and localized shear bands at higher temperatures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Padmavardhani and Y. V. R. K. Prasad:Metall. Trans. A, 1991, vol. 22A, pp. 2985–92.Google Scholar
  2. 2.
    P. Griffiths and C. Hammond:Acta Metall., 1972, vol. 20, pp. 935–45.CrossRefGoogle Scholar
  3. 3.
    Y. V. R. K. Prasad, H. L. Gegel, S. M. Doraivelu, J. C. Malas, J. T. Morgan, K. A. Lark, and D. R. Barker:Metall. Trans. A, 1984, vol. 15A, pp. 1883–92.Google Scholar
  4. 4.
    H. L. Gegel, J. C. Malas, S. M. Doraivelu, and V. A. Shende:Metals Handbook, 9th ed., ASM INTERNATIONAL, Metals Park, OH, 1987, vol. 14, pp. 417–38.Google Scholar
  5. 5.
    J. M. Alexander: inModelling of Hot Deformation of Steels, J. G. Lenard, ed., Springer-Verlag, Berlin, 1989, pp. 101–15.Google Scholar
  6. 6.
    U. S. Landergren, C. E. Birchenall, and R. F. Mehl:J. Met., 1956, vol. 8, pp. 73–78.Google Scholar
  7. 7.
    A. A. Presnyakov and G. V. Starikova:Fiz. Metal. Metalloved., 1961, vol. 12, pp. 873–78.Google Scholar
  8. 8.
    C. S. Barrett:J. Met., 1954, vol. 6, pp. 1003–08.Google Scholar
  9. 9.
    S. Sagat, P. Blenkinsop, and D. M. R. Taplin:J. Inst. Met., 1972, vol. 100, pp. 268–74.Google Scholar
  10. 10.
    T. Chandra, J. J. Jonas, and D. M. R. Taplin:J. Mater. Sci., 1978, vol. 13, pp. 2380–84.CrossRefGoogle Scholar
  11. 11.
    C. W. Humphries and N. Ridely:J. Mater. Sci., 1978, vol. 13, pp. 2477–82.CrossRefGoogle Scholar
  12. 12.
    M. Suery and B. Baudelet:J. Mater. Sci., 1973, vol. 8, pp. 363–69.CrossRefGoogle Scholar
  13. 13.
    D. M. R. Taplin and D. Chandra:J. Mater. Sci., 1975, vol. 10, pp. 1642–43.CrossRefGoogle Scholar
  14. 14.
    T. Chandra, J. J. Jonas, and D. M. R. Taplin:J. Mater. Sci., 1976, vol. 11, pp. 1843–48.CrossRefGoogle Scholar
  15. 15.
    M. Suery and B. Baudelet:Phil. Mag. A, 1980, vol. 41, pp. 41–64.CrossRefGoogle Scholar
  16. 16.
    W. Roberts and R. Otterberg:Microstructure Evolution in Association with Hot Working of a Dezincification-Resistant α/β Brass, Swedish Institute of Metals Research Report No. 1362, Stockholm, 1979;also see W. Roberts: InDeformation Processing and Structure, G. Krauss, ed., ASM, Metals Park, OH, 1984, pp. 109–84.Google Scholar
  17. 17.
    Jacqueline Hennaut, Jacqueline Othmazouri, and Jacques Charlier:Z. Metallkd., 1984, vol. 75, pp. 667–72.Google Scholar
  18. 18.
    A. K. S. Kalyan Kumar: M. Sc. (Engg.) Thesis, Indian Institute of Science, Bangalore, India, 1987/Google Scholar
  19. 19.
    H. Ziegler: inProgress in Solid Mechanics, I.N. Sneddon and R. Hill, eds. North-Holland Publishing Co., Amsterdam, The Netherlands, 1963, pp. 93–193.Google Scholar
  20. 20.
    R. Raj:Metall. Trans. A., 1981, vol. 12A, pp. 1089–97.Google Scholar
  21. 21.
    M. F. Ashby and R. A. Verall:Acta Metall., 1973, vol. 21, pp. 149–63.CrossRefGoogle Scholar
  22. 22.
    Y. V. R. K. Prasad, H. L. Gegel, J. T. Morgan, J. C. Malas, S. M. Doraivelu, and D. R. Barker: inTitanium Net Shape Technologies, F. H. Froes and D. Eylon, eds., TMS-AIME, Warrendale, PA, 1984, pp. 279–89.Google Scholar
  23. 23.
    S. M. L. Sastry, R. L. Lederich, T. C. Mackay, and W. R. Kerr:J. Met., 1983, vol. 35, p. 48.Google Scholar
  24. 24.
    M. Mayer, D. Vohringer, and E. Macherauch: inStrength of Metals and Alloys, ICSMA 5 P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, New York, NY, 1979, vol. 2, pp. 807–12.Google Scholar
  25. 25.
    T. Chandra, J. J. Jonas, and D. M. R. Taplin:Z. Metallkd., 1977, vol. 68, pp. 546–49.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 1991

Authors and Affiliations

  • D. Padmavardhani
    • 1
  • Y. V. R. K. Prasad
    • 1
  1. 1.Department of MetallurgyIndian Institute of ScienceIndia

Personalised recommendations