Skip to main content
Log in

Hydrogen in iron

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The applicability of advanced permeation techniques to the study of hydrogen and deuterium in iron and iron alloys is described. Time lag measurements lead to detailed information about hydrogen transport processes, including lattice diffusivities and trap binding energies and densities. The experimental technique couples gas phase charging of palladium coated specimens with the sensitive electrochemical detection method. In both annealed and deformed iron the trap binding energy for hydrogen and deuterium is 50 to 58 kJ/mol, while the trap density varies from about 1020 m-3 for annealed iron to over 1023 m-3 for heavily deformed iron. For the metallic glass Fe40Ni40P14B6 hydrogen transport occurs between energetically equivalent sites, with no evidence of trapping. The site density was estimated as about 6 x 1029 m-3 . The hydrogen concentrations studied were several orders of magnitude less. Hydrogen and deuterium in iron differs only in their lattice diffusivities. The diffusivity ratio conforms nearly to the classical inverse square root of mass ratio, but shows a slight temperature dependence. The solubilities, trap binding energies, and partial atomic volumes of the two isotopes in iron are identical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A.R. Troiano: Campbell Memorial Lecture,Trans. ASM, 1960, vol. 52, p. 54.

    Google Scholar 

  2. G.G. Hancock and H. H. Johnson:Trans. TMS-AIME, 1965, vol. 236, pp. 513–19.

    Google Scholar 

  3. H.H. Johnson and P.C. Paris:Jnl. of Eng. Fract. Mech., 1968, vol. 1, pp. 3–45.

    Article  Google Scholar 

  4. J.P. Hirth:Metall. Trans. A, 1980, vol. 11A, p. 861.

    ADS  CAS  Google Scholar 

  5. R. A. Oriani:Ann. Rev. Materials Sci., 1978, vol. 8, p. 327.

    Article  CAS  Google Scholar 

  6. Hydrogen Effects in Metals, I. M. Bernstein and A.W. Thompson, eds., TMS-AIME, Warrendale, PA, 1980.

  7. Hydrogen Degradation of Ferrous Alloys, R.A. Oriani, J.P. Hirth, and M. Smialowski, eds., Noyes Publications, Park Ridge.

  8. M.A.V. Devanathan and Z. Stachurski:Proc. Roy. Soc, 1962, vol. 270, p. 90.

    Article  ADS  CAS  Google Scholar 

  9. A.J. Kumnick and H.H. Johnson:Metall. Trans. A, 1975, vol. 6A, p. 1087.

    CAS  Google Scholar 

  10. J. Crank:Mathematics of Diffusion, 2nd ed., Clarendon Press, Oxford U., England, 1975.

    Google Scholar 

  11. A. McNabb and P.K. Foster:Trans. TMS-AIME, 1963, vol. 227, p. 618.

    CAS  Google Scholar 

  12. R.M. Barrer:Diffusion in and Through Solids, Cambridge University Press, England, 1981.

    Google Scholar 

  13. Ruey-Way Lin and Herbert H. Johnson:Scripta Metall., 1982, vol. 16, pp. 1091–96.

    Article  CAS  Google Scholar 

  14. W.-K. Chu, J. W. Mayer, and M-A. Nicolet:Backscattering Spectrometry, Academic Press, New York, NY, 1978.

    Google Scholar 

  15. B.L. Doyle and P. S. Peercy:Appl. Phys. Lett., 1979, vol. 34, p. 811.

    Article  ADS  CAS  Google Scholar 

  16. M.B. Lewis and K. Farrell:Scripta Metall., 1983, vol. 17, pp. 365–69.

    Article  CAS  Google Scholar 

  17. A.J. Kumnick and H.H. Johnson:Acta Metall., 1977, vol. 25, p. 891.

    Article  CAS  Google Scholar 

  18. N. R. Quick and H. H. Johnson:Acta Metall., 1978, vol. 26, p. 903.

    Article  CAS  Google Scholar 

  19. Ruey-Way Lin and Herbert H. Johnson:Jnl. Non-Crystalline Solids, 1982, vol. 51, p. 45.

    Article  ADS  CAS  Google Scholar 

  20. O.D. Gonzalez:Trans. TMS-AIME, 1969, vol. 245, pp. 607–12.

    CAS  Google Scholar 

  21. H.G. Nelson and J.E. Stein: NASA Report TND-7265, NASA Ames Research Center, Moffett Field, CA, 1973.

  22. J.E. Shelby:J. Appl. Phys., 1977, vol. 48, p. 3387.

    Article  ADS  CAS  Google Scholar 

  23. J. Völkl and G. Alefeld:Topics in Applied Physics, J. Völkl and G. Alefeld, eds., Springer, 1978, vol. 28, pp. 321-48.

  24. R.A. Oriani:Fundamental Aspects of Stress Corrosion, R.W. Staehle, ed., NACE, Houston, TX, 1969.

    Google Scholar 

  25. J.R.G. Da Silva, S.W. Stafford, and R.B. McLellan:Jnl. Less-Common Metals, 1976, vol. 49, p. 407.

    Article  Google Scholar 

  26. J.R.G. Da Silva, S.W. Stafford, and R.B. McLellan:Jnl. Less-Common Metals, 1977, vol. 50, p. 1.

    Google Scholar 

  27. L. S. Darken and R. P. Smith:Corrosion, 1949, vol. 5, p. 1.

    Google Scholar 

  28. R.A. Oriani:Acta Metall., 1970, vol. 18, p. 147.

    Article  CAS  Google Scholar 

  29. G.M. Evans and E.C. Rollason:JISI, 1969, vol. 207, p. 1484.

    CAS  Google Scholar 

  30. G. M. Evans and E. C. Rollason:JISI, 1969, vol. 207, p. 1491.

    Google Scholar 

  31. B. Chew:Metal Science Journal, 1971, vol. 5, p. 195.

    Article  CAS  Google Scholar 

  32. M. R. Louthan, A.H. Dexter, and J.A. Donovan:JISI, 1972, vol. 210, p. 58.

    Google Scholar 

  33. von H.-G. Ellerbrock, G. Vibrans, and H.-P. Stuwe:Acta Metall., 1973, vol. 21, p. 663.

    Article  Google Scholar 

  34. A. McNabb:Proc. Amer. Math. Soc, 1962, vol. 13, p. 170.

    Article  MATH  MathSciNet  Google Scholar 

  35. H. L. Frisch:J. Phys. Chem., 1957, vol. 61, p. 93.

    Article  CAS  Google Scholar 

  36. A.J. Kumnick and H.H. Johnson:Ada Metall., 1980, vol. 28, pp. 33–39.

    Article  CAS  Google Scholar 

  37. Herbert H. Johnson and Ruey Way Lin: Reference 6, pp. 3-24.

  38. G.R. Caskey, Jr. and W. L. Pillinger:Metall. Trans. A, 1975, vol. 6A, p. 467.

    ADS  CAS  Google Scholar 

  39. R.-W. Lin: Ph.D. Thesis, Cornell University, 1981.

  40. H.-M. Shih: M. S. Thesis, Cornell University, 1975.

  41. F.H.M. Spit, J.W. Drizven, and S. Radelaar:Z. Phys. Chem. N.F., 1970, vol. 116, p. 225.

    Google Scholar 

  42. F. H. M. Spit, J. W. Drizven, and S. Radelaar:Scripta Metall., 1980, vol. 14, p. 1071.

    Article  CAS  Google Scholar 

  43. H. S. Chen, L. C. Kumerling, J. M. Poate, and W. L. Brown:Appl. Phys. Lett., 1978, vol. 32, p. 461.

    Article  ADS  CAS  Google Scholar 

  44. B. S. Berry and W. C. Pritchet:Phys. Rev., 1981, vol. B24, p. 2299.

    ADS  Google Scholar 

  45. M. Kijek, M. Ahmadzadoh, B. Cantor, and R.W. Cahn:Scripta Metall., 1980, vol. 14, p. 1337.

    Article  CAS  Google Scholar 

  46. M. Ahmadzadeh and B. Cantor:Jnl. Non-Cryst. Sol., 1981, vol. 43, p. 189.

    Article  ADS  CAS  Google Scholar 

  47. W. Beck, J. O’M. Bockris, M.A. Genshaw, and P.K. Subramanyan:Metall. Trans., 1971, vol. 2, p. 803.

    Article  Google Scholar 

  48. B.S. Berry and W. C. Pritchet:Scripta Metall., 1981, vol. 15, p. 637.

    Article  CAS  Google Scholar 

  49. J.J. Rush, J.M. Rowe, and A.J. Maeland:J. Phys. F, 1980, vol. 10, p. L283.

    Article  ADS  CAS  Google Scholar 

  50. A. J. Maeland, L. E. Tanner, and G. G. Libowitz:Jnl. Less-Common Metals, 1980, vol. 74, p. 279.

    Article  CAS  Google Scholar 

  51. P. Studt, J. Shackleford, and R. Fulrath:J. Appl. Phys., 1970, vol. 41, p. 2777.

    Article  ADS  CAS  Google Scholar 

  52. J. Shackleford, P. Studt, and R. Fulrath:J. Appl. Phys., 1972, vol. 43, p. 1619.

    Article  ADS  Google Scholar 

  53. J. Masaryk and R. Fulrath:J. Chem. Phys., 1973, vol. 59, p. 1198.

    Article  ADS  CAS  Google Scholar 

  54. J. Völkl and G. Alefeld: inDiffusion in Solids: Recent Developments, A. S. Vowick and J.J. Barton, eds., Academic Press, New York, NY, 1975.

    Google Scholar 

  55. G. Schaumann, J. Völkl, and G. Alefeld:Phys. Solidi, 1970, vol. 42, p. 401.

    Article  CAS  Google Scholar 

  56. J. A. Sussman and Y. Weisman:Phys. Status Solidi, 1972, vol. B53, p. 419.

    Article  Google Scholar 

  57. C.P. Flynn and A.M. Stoneham:Phys. Rev., 1970, vol. Bl, p. 3966.

    ADS  Google Scholar 

  58. H.K. Birnbaum and C. A. Wert:her. Bunsen Gesellschaft, 1972, vol. 76, p. 806.

    CAS  Google Scholar 

  59. Th. Heumann and D. Primas:Z. Naturf., 1966, vol. 21a, p. 260.

    ADS  Google Scholar 

  60. O. D. Gonzalez:Trans. TMS-AIME, 1967, vol. 239, p. 929.

    CAS  Google Scholar 

  61. M.R. Louthan, R.G. Derrick, J.A. Donovan, and G.R. Caskey:Effect of Hydrogen in the Behavior of Materials, A.W. Thompson and I.M. Bernstein, eds., TMS-AIME, New York, NY, 1976.

    Google Scholar 

  62. D.K. Kuhn: Ph.D. Thesis, Cornell U., 1985.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, H.H. Hydrogen in iron. Metall Trans B 19, 691–707 (1988). https://doi.org/10.1007/BF02650189

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02650189

Navigation