Skip to main content
Log in

Determination of effective stress and dislocation velocity in the deformation of Ti-doped iron

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Measurements have been done of the stress sensitivity of the strain rate and of the strainvs stress in a commercial, Ti-doped, “interstitial free” (IF) iron. In conjunction with a theoretical analysis, these measurements allow the determination of the constants of the power-law relationship between dislocation velocity and effective stress, as well as the mean free dislocation path descriptive of parabolic strain hardening. The theory can then be used to calculate the effective stress for various mechanical histories and thus predict many of the mechanical properties of the IF iron. The methods, if more generally applicable, represent a significant advance in our quantitative understanding of inelastic deformation and may permit more precise control of industrial deformation processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strengthening Methods in Crystals, A. Kelly and R.B. Nicholson, eds., John Wiley & Sons, New York, NY, 1971.

    Google Scholar 

  2. U.F. Kocks, A.S. Argon, and M.F. Ashby:Thermodynamics and Kinetics of Slip, Pergamon Press, Oxford, 1975.

    Google Scholar 

  3. U.F. Kocks:Philos. Mag., 1966, vol. 13, pp. 541–66.

    Article  Google Scholar 

  4. J.W. Morris,Jr. and D.H. Klahn:J. Appl. Phys., 1974, vol. 45, pp. 2027–38.

    Article  Google Scholar 

  5. E. Orowan:Proc. Phys. Soc., 1940, vol. 52, pp. 8–22.

    Article  Google Scholar 

  6. J.J. Gilman:Micromechanics of Flow in Solids. McGraw-Hill, New York, NY, 1969.

    Google Scholar 

  7. W.G. Johnston and J.J. Gilman:J. Appl. Phys., 1959, vol. 30, pp. 129–44.

    Article  CAS  Google Scholar 

  8. W.G. Johnston:J. Appl. Phys., 1962, vol. 33, pp. 2716–30.

    Article  CAS  Google Scholar 

  9. A.P.L. Turner and T. Vreeland,Jr.:Acta Metall., 1970, vol. 18, pp. 1225–35.

    Article  CAS  Google Scholar 

  10. Dale F. Stein and J.R. Low, Jr.:J. Appl. Phys., 1960, vol. 31, pp. 362–69.

    Article  CAS  Google Scholar 

  11. W. Frank Greenman, Thad Vreeland, Jr., and David S. Wood:J. Appl. Phys., 1967, vol. 38, pp. 3595–603.

    Article  CAS  Google Scholar 

  12. H.W. Schadler:Acta Metall., 1964, vol. 12, pp. 861–70.

    Article  CAS  Google Scholar 

  13. R.W. Rohde and C.H. Pitt:J. Appl. Phys., 1967, vol. 38, pp. 876–79.

    Article  CAS  Google Scholar 

  14. H.D. Guberman:Acta Metall., 1968, vol. 16, pp. 713–21.

    Article  CAS  Google Scholar 

  15. H.L. Prekel and H. Conrad: inDislocation Dynamics, A.R. Rosenfield, G.T. Hahn, A.L. Bement, Jr., and R.I. Jaffee, eds., McGraw-Hill, New York, NY, 1968, pp. 431–52.

    Google Scholar 

  16. T.H. Alden:Metall. Trans. A, 1987, vol. 18A, pp. 51–62.

    CAS  Google Scholar 

  17. T.H. Alden:Metall. Trans. A, 1987, vol. 18A, pp. 811–26.

    CAS  Google Scholar 

  18. T.H. Alden:Acta Metall., 1989, vol. 37, in press.

  19. T.H. Alden:Acta Metall., 1987, vol. 35, pp. 2621–26.

    Article  CAS  Google Scholar 

  20. A.S. Keh:Philos. Mag., 1965, vol. 12, pp. 9–29.

    Article  CAS  Google Scholar 

  21. J.D. Livingston:Acta Metall., 1962, vol. 10, pp. 229–39.

    Article  CAS  Google Scholar 

  22. J.E. Bailey and P.B. Hirsch:Philos. Mag., 1960, vol. 5, pp. 485–97.

    Article  CAS  Google Scholar 

  23. G.M. Pharr and W.D. Nix:Acta Metall., 1979, vol. 27, pp. 433–44.

    Article  CAS  Google Scholar 

  24. W.C. Leslie:Metall. Trans., 1972, vol. 3, p. 5.

    CAS  Google Scholar 

  25. T.H. Alden:Metall. Trans. A, 1985, vol. 16A, pp. 375–92.

    Google Scholar 

  26. T.H. Alden:Acta Metall., 1988, vol. 36, pp.1389–96.

    Article  CAS  Google Scholar 

  27. J.T. Michalak:Acta Metall., 1965, vol. 13, pp. 213–22.

    Article  CAS  Google Scholar 

  28. U.F. Kocks:Metall. Trans., 1970, vol. 1, pp. 1121–43.

    Google Scholar 

  29. J.W. Christian:Acta Metall., 1964, vol. 12, p. 99.

    Article  Google Scholar 

  30. W.G. Johnston and D.F. Stein:Acta Metall., 1963, vol. 11, pp. 317–18.

    Article  CAS  Google Scholar 

  31. C.N. Ahlquist and W.D. Nix:Acta Metall., 1971, vol. 19, pp. 373–85.

    Article  Google Scholar 

  32. W.D. Nix, W.A. Coghlan, and C.R. Barrett: Mater. Sci. Eng., 1969, vol. 4, pp. 98-105.

  33. C.J. McMahon, Jr.: inMicroplasticity, C.J. McMahon, Jr., ed., John Wiley & Sons, New York, NY, 1968, pp. 121–40.

    Google Scholar 

  34. J.C. Gibeling and T.H. Alden:Acta Metall., 1984, vol. 32, pp. 2069–75.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alden, T.H. Determination of effective stress and dislocation velocity in the deformation of Ti-doped iron. Metall Trans A 20, 1029–1036 (1989). https://doi.org/10.1007/BF02650139

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02650139

Keywords

Navigation