Skip to main content
Log in

A numerical simulation of the D.C. continuous casting process including nucleate boiling heat transfer

  • Transport phenomena
  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

The steady-state thermal problem associated with the direct-chill continuous casting of A6063 aluminum cylindrical ingots is solved using the numerical finite element technique. Excellent correlation is demonstrated between the numerical model and experimental data from ingots cast at two different speeds. By application of the model, effective heat transfer coefficients are calculated as a function of vertical position on the outside surface of the ingot. It is shown that direct application of these coefficients to the modeling of different casting situations will produce substantial errors in the region in which heat transfer is by nucleate boiling. Using theories of nucleate boiling with forced convection and film cooling, a method is developed to calculate the external boundary conditions in the submold region of the ingot, thus making it possible for the first time to define explicitly all of the thermal boundary conditions associated with this casting configuration. These theories are incorporated into the numerical model, and a subsequent simulation shows excellent agreement with experimental data from a third ingot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Roth:Aluminium, 1943, vol. 25, pp. 283–91.

    Google Scholar 

  2. A.I. Veynik:Theory of Special Casting Methods, ASME, New York, NY, 1962, pp. 11–145.

    Google Scholar 

  3. A.A. Sfeir and J.A. Clumpner:J. Heat Transfer, Trans. ASME, 1977, vol. 99, pp. 29–34.

    CAS  Google Scholar 

  4. R. Siegel:Int. J. Heat Mass Transfer, 1978, vol. 21, pp. 1421–30.

    Article  CAS  Google Scholar 

  5. H. Klein:Giesserei (Techn.-Wiss. Beihefte), 1953, vol. 10, pp. 441–54.

    Google Scholar 

  6. D. Adenis, K.H. Coats, and D.V. Ragone:J. Inst. Metals, 1962–63, vol. 91, pp. 395–403.

    Google Scholar 

  7. P.G. Kroeger: in “Heat Transfer 1970”, U. Grigull and E. Hahne, eds.,Proc. 4th Int. Heat Transfer Conf., 1970, Paris, American Elsevier Publishing Co. New York, NY, 1971, vol. 1, p. CU2.7

    Google Scholar 

  8. J. Mathew and H.D. Brody:Proc. of Int. Conf. on Solidification, A. Nicholson, ed., The Metals Society, University of Sheffield, July 1977, pp. 244–49.

  9. D.C. Weckman, R.J. Pick, and P. Niessen:Z. Metallkde., 1979, vol. 70, pp. 750–57.

    Google Scholar 

  10. H. Fossheim and E.E. Madsen:Light Metals 1979, W.S. Peterson, ed., TMS-AIME, Warrendale, PA, 1979, pp. 695–720.

    Google Scholar 

  11. E.K. Jensen:Light Metals 1980, K.J. McMinn, ed., TMS-AIME, Warrendale, PA, 1980, pp. 631–42.

    Google Scholar 

  12. V. Venkateswaran: Ph.D. thesis, University of British Columbia, Vancouver, BC, Canada, 1980.

  13. D.A. Peel and A.E. Pengelly:Mathematical Models in Metallurgical Process Development, London, The Iron and Steel Institute, 1970, pp. 186–96.

    Google Scholar 

  14. J. Szargut and J. Skorek:Met. Tech., 1980, vol. 7, pt. 1, pp. 36–40.

    CAS  Google Scholar 

  15. J.E. Lait, J.K. Brimacombe, and F. Weinberg:Continuous Casting, K.R. Olen, ed., TMS-AIME, Warrendale, PA, 1973, pp. 151–70.

    Google Scholar 

  16. ibid, pp. 171–96.

    Google Scholar 

  17. F. Weinberg:Metall. Trans. A, 1975, vol. 6A, pp. 1971–85.

    CAS  Google Scholar 

  18. Y.S. Touloukian, ed.:Thermophysical Properties of Matter, Thermophysical Properties Research Center, Purdue University, Plenum Publishing Corp., New York, NY, 1970.

    Google Scholar 

  19. G. Fortina and F. Gatto:Light Metals 1978, K.B. Higbie, ed., TMS-AIME, Warrendale, PA, 1978, pp. 365–80.

    Google Scholar 

  20. G. Porro and P. Lombardi:Alluminio, 1954, vol. 23, pp. 23–34.

    Google Scholar 

  21. J. Mathew: Ph.D. thesis, University of Pittsburgh, Pittsburgh, PA, 1977.

  22. E.F. Emley:Int. Met. Rev., 1976, vol. 21, pp. 75–115.

    Google Scholar 

  23. D.L.W. Collins:Metallurgia, 1967, vol. 76, pp. 137–44.

    CAS  Google Scholar 

  24. R. Bachowski and R.E. Spear:Light Metals 1975, R. Rentsch, ed., TMS-AIME, Warrendale, PA, 1975, vol. 2, pp. 111–18.

    Google Scholar 

  25. R. Mitamura, T. Ito, Y. Takahashi, and T. Hiraoka:Light Metals 1978, J.J. Miller, ed., TMS-AIME, Warrendale, PA, 1978, pp. 281–91.

    Google Scholar 

  26. R.G. Piesche:Met. Tech., 1978, vol. 5, pt. 8, pp. 257–63.

    CAS  Google Scholar 

  27. D.D. Beattie:Met. Tech., 1977, vol. 4, pp. 147–52.

    Google Scholar 

  28. D.M. Lewis:J. Inst. Metals, 1953–54, vol. 82, pp. 395–413.

    Google Scholar 

  29. W.H. McAdams, W.E. Kennel, C.S. Minden, R. Carl, P.M. Picornell, and J.E. Dew:Ind. Eng. Chem., 1949, vol. 41, pp. 1945–53.

    Article  CAS  Google Scholar 

  30. F. Kreith:Principles of Heat Transfer, Intext Education Publishers, New York, NY, 1976, pp. 495–524.

    Google Scholar 

  31. W.M. Rohsenow:Heat Transfer with Boiling, in “Developments in Heat Transfer,” W.M. Rohsenow, ed., The M.I.T. Press, Cambridge, MA, 1964, pp. 169–260.

    Google Scholar 

  32. W.M. Rohsenow:Heat Transfer with Boiling, in “Modern Developments in Heat Transfer,” W. Ibele, ed., Academic Press, New York, NY, 1963, pp. 85–158.

    Google Scholar 

  33. W.M. Rohsenow: “Boiling,” inHandbook of Heat Transfer, W.M. Rohsenow and J.P. Harnett, eds., McGraw-Hill Book Comp., New York, NY, 1973, pp. 13-3 to 13-74.

    Google Scholar 

  34. R.B. Bird, W.E. Stewart, and E.N. Lightfoot:Transport Phenomena, John Wiley and Sons, Inc., New York, NY, 1960, p. 40.

    Google Scholar 

  35. W.H. McAdams, T.B. Drew, and G.S. Bays, Jr.:Trans. ASME, 1940, vol. 62, pp. 627–31.

    Google Scholar 

  36. W.H. McAdams:Heat Transmission, McGraw-Hill Book Comp., New York, NY, 1954, p. 244.

    Google Scholar 

  37. M. Jakob:Heat Transfer, John Wiley and Sons, Inc., New York, NY, 1959, vol. II, p. 355.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weckman, D.C., Niessen, P. A numerical simulation of the D.C. continuous casting process including nucleate boiling heat transfer. Metall Trans B 13, 593–602 (1982). https://doi.org/10.1007/BF02650017

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02650017

Keywords

Navigation