Skip to main content
Log in

Analysis on the amplitude of serrated flow associated with the Portevin-LeChatelier effect of substitutional fee alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The serration of flow curve is a common feature of the Portevin-LeChatelier effect of substitutional fcc alloys. Under the condition that the onset strain of serration decreases with increasing temperature, previous experimental results have shown that the serration stress amplitude, Δσ, increases with increasing strain (ε) and temperature (T); it decreases with increasing grain size (d) and strain rate (ε). A conventional rationalization assumes that Δσ is proportional to the number of solute atoms, N, in dislocation atmospheres, where N is a function of the diffusion coefficient, aging time, and temperature. By adopting this approach and taking into account the effects of strain rate, strain, and grain size, the relation Δ α[ε−1 εβ(1/2 + γ) d−n(1/2 + γ) T-1 exp (-Q/kT)]2/3 is proposed, where Q is the activation energy associated with substitutional diffusion. The proposed model fits well with the experimental data of an Al-3.7 wt pct Mg alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.G. McCormick:Acta Metall., 1971, vol. 19, pp. 463–71.

    Article  CAS  Google Scholar 

  2. S. Miura, A. Haerian, and S. Hashimoto:J. Mater. Sci., 1987, vol. 22, pp. 3446–52.

    Article  CAS  Google Scholar 

  3. B. Russell:Phil. Mag., 1963, vol. 8, pp. 615–30.

    Article  CAS  Google Scholar 

  4. F.A. Mohamed, K.L. Murty, and T.G. Langdon:Acta Metall., 1974, vol. 22, pp. 325–32.

    Article  CAS  Google Scholar 

  5. B.J. Brindley and P.J. Worthington:Metall. Rev., 1970, vol. 145, pp. 101–14.

    Google Scholar 

  6. J. Guillot and J. Grilhe:Acta Metall., 1972, vol. 20, pp. 291–95.

    Article  CAS  Google Scholar 

  7. R.W. Hayes:Mater. Sci. Eng., 1986, vol. 82, pp. 85–92.

    Article  CAS  Google Scholar 

  8. P.G. McCotmick:Phil. Mag., 1971, vol. 23, pp. 949–56.

    Article  Google Scholar 

  9. B.J. Brindley and P.J. Worthington:Acta Metall., 1969, vol. 17, pp. 1357–61.

    Article  CAS  Google Scholar 

  10. I.S. Kim and M.C. Chaturvedi:Mater. Sci. Eng., 1979, vol. 37, pp. 165–72.

    Article  CAS  Google Scholar 

  11. E. Pink and A. Grinberg:Acta Metall., 1982, vol. 30, pp. 2153–60.

    Article  CAS  Google Scholar 

  12. E. Pink and A. Grinberg:Mater. Sci. Eng., 1981, vol. 51, pp. 1–8.

    Article  CAS  Google Scholar 

  13. A.H. Cottrell and B.A. Bilby:Proc. Phys. Soc., 1949, vol. 62, pp. 49–62.

    Google Scholar 

  14. H.G. van Bueren and P. Jongenburger:Nature, 1953, vol. 175, pp. 544–45.

    Article  Google Scholar 

  15. K. Mukherjee, C. D'Antonio, and R.J. Maciag:Scripta Metall., 1970, vol. 4, pp. 209–12.

    Article  CAS  Google Scholar 

  16. H. Conrad and B. Christ: Recovery and Recrystallization of Metals, L. Himmel, ed., AIME, New York, NY, 1963, pp. 124–30.

    Google Scholar 

  17. W. Charnock:Phil. Mag., 1968, vol. 18, pp. 89–99.

    Article  Google Scholar 

  18. J.N. Lomer and H.M. Rosenberg:Phil. Mag., 1959, vol. 4, pp. 467–83.

    Article  CAS  Google Scholar 

  19. R.K. Ham and D. Jaffrey:Phil. Mag., 1967, vol. 15, pp. 247–56.

    Article  CAS  Google Scholar 

  20. A.J.R. Soler-Gomez and W.J. McG. Tegart:Phil. Mag., 1969, vol. 20, pp. 495–509.

    Article  CAS  Google Scholar 

  21. P.G. McCormick:Acta Metall., 1972, vol. 20, pp. 351–54.

    Article  CAS  Google Scholar 

  22. K. Mukherjee, C. D'Antonio, R.J. Maciag, and G. Fischer:J. Appl. Phys., 1968, vol. 39, pp. 5434–40.

    Article  CAS  Google Scholar 

  23. J.D. Baird: The Inhomogeneity of Plastic Deformation, R.E. Reed-Hill, ed., ASM, Metals Park, OH, 1973, pp. 191–222.

    Google Scholar 

  24. D. Kuhlmann-Wilsdorf:Metall. Trans. A, 1985, vol. 16A, pp. 2091- 2108.

    Google Scholar 

  25. D.M. Riley and P.G. McCormick:Acta Metall., 1977, vol. 25, pp. 181–85.

    Article  CAS  Google Scholar 

  26. L.P. Kubin and Y. Estrin:Acta Metall. Mater., 1990, vol. 38 (5), pp. 697–708.

    Article  CAS  Google Scholar 

  27. L.P. Kubin and Y. Estrin:Phys. Status Solidi B, 1992, vol. 172, pp. 173–85.

    Article  CAS  Google Scholar 

  28. M.C. Chen, L.H. Chen, and T.S. Lui:Script Metall., 1989, vol. 23 (5), pp. 655–58.

    Article  CAS  Google Scholar 

  29. M.C. Chen, L.H. Chen, and T.S. Lui:Acta Metall. Mater., 1992, vol. 40 (9), pp. 2433–38.

    Article  CAS  Google Scholar 

  30. A.H. Cottrell and M.A. Jaswon:Proc. R. Soc., 1949, vol. A199, pp. 104–14.

    CAS  Google Scholar 

  31. J.G. Rider and C.T.B. Foxon:Phil. Mag., 1966, vol. 13, pp. 289–303.

    Article  CAS  Google Scholar 

  32. J.E. Baily:Phil. Mag., 1963, vol. 8, pp. 223–36.

    Article  Google Scholar 

  33. J.E. Baily and P.B. Hirsch:Phil. Mag., 1960, vol. 5, pp. 485–97.

    Article  Google Scholar 

  34. S. Hashimoto and S. Miura: Memorandum of Faculty of Engineering, Kyoto University, Japan, 1968, vol. 48, p. 30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, Department of Materials Science and Engineering, National Cheng-Kung University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M.C., Chen, L.H. & Lui, T.S. Analysis on the amplitude of serrated flow associated with the Portevin-LeChatelier effect of substitutional fee alloys. Metall Mater Trans A 27, 1691–1694 (1996). https://doi.org/10.1007/BF02649826

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649826

Keywords

Navigation