Skip to main content
Log in

Ferrite nucleation and growth during continuous cooling

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The austenite decomposition has been investigated in two hypoeutectoid plain carbon steels under continuous cooling conditions using a dilatometer on a Gleeble 1500 thermomechanical simulator. The experimental results were used to verify model calculations based on a fundamental approach for the dilute ternary system, Fe-C-Mn. The austenite-to-ferrite transformation start temperature can be predicted from a nucleation model for slow cooling rates and small austenite grain sizes, where ferrite nucleates at austenite grain corners. The nuclei are assumed to have an equilibrium composition and a pillbox shape in accordance with minimal interfacial energy. For higher cooling rates or larger austenite grain sizes, early growth has to be taken into account to describe the transformation start, and nucleation is also encouraged at the remaining sites of the austenite grain boundaries. In contrast to nucleation, growth of the ferrite is characterized by paraequilibrium;i.e., only carbon can redistribute, whereas the diffusion of Mn is too slow to allow full equilibrium in the ternary system. However, Mn segregation to the moving ferrite-austenite interface has to be considered. The latter, in turn, exerts a solute draglike effect on the boundary movement. Thus, growth kinetics are controlled by carbon diffusion in austenite modified by interfacial segregation of Mn. Employing a phenomenological segregation model, good agreement has been achieved with the measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Enomoto and H.I. Aaronson:Metall. Trans. A, 1986, vol. 17A, pp. 1381–84.

    CAS  Google Scholar 

  2. M. Enomoto and H.I. Aaronson:Metall. Trans. A, 1986, vol. 17A, pp. 1385–97.

    CAS  Google Scholar 

  3. M. Enomoto and H.I. Aaronson:Metall. Trans. A, 1986, vol. 17A, pp. 1399–07.

    CAS  Google Scholar 

  4. W.F. Lange III, M. Enomoto, and H.I. Aaronson:Metall. Trans. A, 1988, vol. 19A, pp. 427–40.

    CAS  Google Scholar 

  5. R.G. Kamat, E.B. Hawbolt, L.C. Brown, and J.K. Brimacombe:Metall. Trans. A, 1992, vol. 23A, pp. 2469–80.

    CAS  Google Scholar 

  6. R.A. Vandermeer:Acta Metall., 1990, vol. 38, pp. 2461–70.

    Article  CAS  Google Scholar 

  7. J.R. Bradley and H.I. Aaronson:Metall. Trans. A, 1981, vol. 12A, pp. 1729–41.

    Google Scholar 

  8. S.P. Gupta:Steel Res., 1993, vol. 64, pp. 623–29.

    CAS  Google Scholar 

  9. M. Avrami:J. Chem. Phys., 1939, vol. 7, pp. 1103–12.

    Article  CAS  Google Scholar 

  10. E.B. Hawbolt, B. Chau, and J.K. Brimacombe:Metall. Trans. A, 1983, vol. 14A, pp. 1803–15.

    CAS  Google Scholar 

  11. P.C. Campbell, E.B. Hawbolt, and J.K. Brimacombe:Metall. Trans. A, 1991, vol. 22A, pp. 2779–90.

    CAS  Google Scholar 

  12. J.B. Leblond and J. Devaux:Acta Metall., 1984, vol. 32, pp. 137–46.

    Article  CAS  Google Scholar 

  13. P.K. Agarwal and J.K. Brimacombe:Metall. Trans. B, 1981, vol. 12B, pp. 121–33.

    CAS  Google Scholar 

  14. E.B. Hawbolt, B. Chau, and J.K. Brimacombe:Metall. Trans. A, 1985, vol. 16A, pp. 565–78.

    CAS  Google Scholar 

  15. J.S. Kirkaldy and E.A. Baganis:Metall. Trans. A, 1978, vol. 9A, pp. 495–501.

    CAS  Google Scholar 

  16. M. Militzer, A. Giumelli, E.B. Hawbolt, and T.R. Meadowcroft:Proc. 36th Mechanical Working and Steel Processing Conf., Vol. XXXII, ISS, Baltimore, MD, 1995, pp. 375–84.

    Google Scholar 

  17. I. Tamura:Trans. Iron Steel Inst. Jpn., 1987, vol. 27, pp. 763–79.

    CAS  Google Scholar 

  18. K. Matsuura and Y. Itoh:Mater. Trans. JIM, 1991, vol. 32, pp. 1042–47.

    CAS  Google Scholar 

  19. H.J. Frost and M.F. Ashby:Deformation-Mechanism Maps, Pergamon Press, Oxford, United Kingdom, 1982, pp. 60–70.

    Google Scholar 

  20. A. Choquet, P. Fabrègue, J. Guisti, B. Chamont, J.N. Pezant, and F. Blanchet: inMathematical Modelling of Hot Rolling of Steels, S. Yue, ed., CIM, Hamilton, ON, 1990, pp. 34–43.

    Google Scholar 

  21. T. Abe, T. Honda, S. Ishizaki, H. Wada, N. Shikanai, and T. Okita: inMathematical Modelling of Hot Rolling of Steels, S. Yue, ed., CIM, Hamilton, ON, 1990, pp. 66–75.

    Google Scholar 

  22. M. Militzer, E.B. Hawbolt, and T.R. Meadowcroft: inPhase Transformations during the Thermal/Mechanical Processing of Steel, E.B. Hawbolt and S. Yue, eds., CIM, Montreal, PQ, 1995, pp. 445- 58.

    Google Scholar 

  23. M. Militzer, R. Pandi, and E.B. Hawbolt: inSolid → Solid Phase Transformations, W.C. Johnson, J.M. Howe, D.E. Laughlin, and W.A.Soffa eds., TMS, Warrendale, PA, 1994, pp. 177–82.

    Google Scholar 

  24. J. Crank:The Mathematics of Diffusion, 2nd ed., Clarendon Press, Oxford, United Kingdom, 1975, pp. 11–12.

    Google Scholar 

  25. H. Oikawa:Tetsu-to-Hagané, 1982, vol. 68, pp. 1489–97.

    CAS  Google Scholar 

  26. J. Ågren:Scripta Metall., 1986, vol. 20, pp. 1507–10.

    Article  Google Scholar 

  27. M. Umemoto, A. Hiramatsu, A. Moriya, T. Watanabe, S. Nanba, N. Nakajima, G. Anan, and Y. Higo:Iron Steel Inst. Jpn. Int., 1992, vol. 32, pp. 306–15.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made during TMS/ASM Materials Week in the symposium entitled “Atomistic Mechanisms of Nucleation and Growth in Solids,” organized in honor of H.I. Aaronson’s 70th Anniversary and given October 3–5, 1994, in Rosemont, Illinois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Militzer, M., Pandi, R. & Hawbolt, E.B. Ferrite nucleation and growth during continuous cooling. Metall Mater Trans A 27, 1547–1556 (1996). https://doi.org/10.1007/BF02649814

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649814

Keywords

Navigation