Skip to main content
Log in

A study on coherency strain and precipitate morphologyvia a discrete atom method

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Morphological evolution of coherent precipitates is studied by means of a discrete atom method under a plane strain condition with a purely dilatational misfit. The method is predicated upon Hookean atomic interactions and Monte Carlo diffusion and makes no assumption of a specific precipitate shape. Precipitates having elastic constants different from those of the matrix phase are treated in both isotropic and anisotropic elastic systems. Shape evolution is examined under the condition of a constant precipitate size and an isotropic interfacial energy. The results show that in general, an elastically soft precipitate tends to have an equilibrium morphology of low symmetry such as a plate, whereas a hard particle tends to take up a shape of high symmetry such as a circle. Morphological evolution proceeds through dynamic activities of coherency-induced interfacial waves whose wavelength depends upon the difference in elastic constants, precipitate geometry, anisotropy, and diffusion temperature. Coherency-induced interfacial waves seem to be responsible for the protrusions often observed along elastically hard directions in γ′ particles of Ni-base superalloys and also to be a source for fresh ledges for growthvia the ledge mechanism. For a highly nonequilibrium precipitate, first splitting followed by coalescence appears to be a common feature in achieving its equilibrium morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Wulff:Z Kristallogr., 1901, vol. 34, p. 449.

    CAS  Google Scholar 

  2. J.D. Eshelby:Prog. Solid Mech., 1961, vol. 2, p. 89.

    Google Scholar 

  3. Jong K. Lee, D.M. Barnett, and H.I. Aaronson:Metall. Trans. A, 1977, vol. 8A, pp. 963–70.

    CAS  Google Scholar 

  4. T. Mura:Micromechanics of Defects in Solids, 2nd ed., Martinus Nijhoff, Dordrecht, 1987, p. 177.

    Google Scholar 

  5. A.G. Khachaturyan:Theory of Structural Transformations in Solids, Wiley and Sons, New York, NY, 1983, p. 213.

    Google Scholar 

  6. Y. Wang, L.Q. Chen, and A.G. Khachaturyan: inSolid → Solid Phase Transformations, W.C. Johnson, J.M. Howe, D.E. Laughlin, and W.A.Soffa, eds., TMS, Warrendale, PA, 1994, p. 245.

    Google Scholar 

  7. Y. Wang, L.Q. Chen, and A.G. Khachaturyan:Acta Metall., 1993, vol. 41, p. 279.

    Article  CAS  Google Scholar 

  8. M. McCormack, A.G. Khachaturyan, and J.W. Morris:Acta Metall., 1992, vol. 40, p. 325.

    Article  CAS  Google Scholar 

  9. M.E. Thompson, C.S. Su, and P.W. Voorhees:Acta Metall., 1994, vol. 42, p. 2107.

    Article  CAS  Google Scholar 

  10. Z.A. Moschovidis and T. Mura:J. Appl. Mech., 1975, vol. 42, p. 847.

    Google Scholar 

  11. S. Satoh and W.C. Johnson:Metall. Trans. A, 1992, vol. 23A, pp. 2761–73.

    CAS  Google Scholar 

  12. P.H. Leo and R.F. Sekerka:Acta Metall., 1989, vol. 37, p. 3119.

    Article  Google Scholar 

  13. J. Gayda and DJ. Srolovitz:Acta Metall., 1989, vol. 37, p. 641.

    Article  CAS  Google Scholar 

  14. J.K. Lee:Metall. Trans. A, 1991, vol. 22A, pp. 1197–1209.

    Google Scholar 

  15. J.K. Lee:Scripta Metall., 1995, vol. 32, p. 559.

    Article  CAS  Google Scholar 

  16. W.G. Hoover, W.T. Ashurst, and R.J. Olness:J. Chem. Phys., 1974, vol. 60, p. 4043.

    Article  CAS  Google Scholar 

  17. R.A. Johnson:Phys. Rev. B, 1972, vol. 6, p. 2094.

    Article  Google Scholar 

  18. J.T.M. de Hosson: inInteratomic Potentials and Crystalline Defects, J.K. Lee, ed., TMS, Warrendale, PA, 1981, p. 3.

    Google Scholar 

  19. K. Binder:Monte Carlo Methods, Springer-Verlag, New York, NY, 1979, p. 1.

    Google Scholar 

  20. J.K. Lee: Michigan Technological University, Houghton, MI, unpublished research, 1994.

  21. W.C. Johnson and J.W. Cahn:Acta Metall., 1984, vol. 32, p. 1925.

    Article  CAS  Google Scholar 

  22. S.J. Yeom, D.Y. Yoon, and M.F. Henry:Metall. Trans. A, 1993, vol. 24A, pp. 1975–81.

    CAS  Google Scholar 

  23. A. Maheshwai and A.J. Ardell:Scripta Metall., 1992, vol. 26, p. 347.

    Article  Google Scholar 

  24. T. Miyazaki and M. Doi:Mater. Sci. Eng., 1989, vol. Al 10, p. 175.

    Google Scholar 

  25. Y.S. Yoo, D.Y. Yoon, and M.F. Henry:Metals and Materials, 1995, vol. 1, p. 47.

    CAS  Google Scholar 

  26. M.G. Hall and H.I. Aaronson:Metall. Trans. A, 1994, vol. 25A, 1923.

    Article  CAS  Google Scholar 

  27. M.A. Grinfeld:J. Nonlinear Sci., 1993, vol. 3, p. 35.

    Article  Google Scholar 

  28. D.J. Srolovitz:Acta Metall., 1989, vol. 37, p. 621.

    Article  Google Scholar 

  29. H. Gao:J. Mech. Phys. Solids, 1991, vol. 39, p. 443.

    Article  Google Scholar 

  30. B.J. Spencer, P.W. Voorhees, and S.H. Davis:Phys. Rev. Lett., 1991, vol. 67, p. 3696.

    Article  CAS  Google Scholar 

  31. F.A. Nichols and W.W. Mullins:Trans. TMS-AIME, 1965, vol. 233, p. 1840.

    CAS  Google Scholar 

  32. M. Meshkinpour and A.J. Ardell:Mater. Sci. Eng., 1994, vol. A185, p. 153.

    Google Scholar 

  33. T. Miyazaki, H. Imamura, and T. Kozakai:Mater. Sci. Eng., 1982, vol. 54, p. 9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made during TMS/ASM Materials Week in the symposium entitled “Atomistic Mechanisms of Nucleation and Growth in Solids,” organized in honor of H.I. Aaronson’s 70th Anniversary and given October 3–5, 1994, in Rosemont, Illinois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.K. A study on coherency strain and precipitate morphologyvia a discrete atom method. Metall Mater Trans A 27, 1449–1459 (1996). https://doi.org/10.1007/BF02649806

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649806

Keywords

Navigation