Skip to main content
Log in

The trapping of positrons by dislocations produced in single crystal bending

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The deformation by bending of high purity copper and zinc single crystals was studied by detection and measurement of the Doppler-broadened gamma ray spectrum due to the annihilation of positrons in the crystals. The measurements were performed with a Ge(Li) spectrometer. The crystals were oriented and bent so as to introduce primarily edge dislocations into the material. The range of dislocation densities studied was from about 1.6 × 109 m-2 to 1.3 × 1012 m-2.

Upon bending the copper crystals showed essentially a linear increase in shape factor (a parameter which describes the positron trapping) above a calculated dislocation density of 5 × 1011 m−2. The positron trapping rate per unit dislocation density was calculated from the experimental data and certain assumptions in the trapping model and found to bebetween 1.6 × 1016 and 3.5 × 1016 s−1

Annealing of the bent crystals is also discussed from the standpoint of the effect it has on the trapping of positrons. Polygonization produced an increase in shape factor which is attributed to trapping by low angle subgrain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. Hodges:Phys. Rev. Lett., 1970, vol. 25, p. 284.

    Article  CAS  Google Scholar 

  2. J. W. Martin and R. Paetsch:J. Met. Phys. F., 1972, vol. 2, p. 991.

    Google Scholar 

  3. B. T. A. McKee, W. Triftshauser, and A. Stewart:Phys. Rev. Lett, 1972, vol. 28, p. 358.

    Article  CAS  Google Scholar 

  4. S. Siamoto, B. T. A. McKee, and A. T. Stewart:Phys. Status Solidi, 1974, vol. A21,p. 623.

    Google Scholar 

  5. R. W. Cahn:J. Inst. Metals, 1949, vol. 86, p. 121.

    Google Scholar 

  6. J.D. Livingston:J. Appl. Phys., 1960, vol. 31, p. 1071.

    Article  CAS  Google Scholar 

  7. P. Sinha:J. Appl. Phys., 1961, vol. 32, p. 1222.

    Article  CAS  Google Scholar 

  8. J. J. Gilman:Acta Met, 1955, vol. 3, p. 277.

    Article  CAS  Google Scholar 

  9. F. L. Vogel:Trans. AIME, 1956, vol. 206, p. 946.

    Google Scholar 

  10. M. L. Johnson:M.S. Thesis, University of Utah, 1977.

  11. P. C. Lichtenburger: Ph.D. Thesis, 1972, University of Waterloo, Canada.

    Google Scholar 

  12. J. J. Gilman:Micromechanics of Flow, McGraw-Hill, 1969.

  13. D. M. Shrader:Phys. Rev., 1970, vol. Al, p. 1070.

    Google Scholar 

  14. A. G. Gould, R. N. West, and B. G. Hogg:Can. J. Phys., 1972, vol. 50, p. 2294.

    CAS  Google Scholar 

  15. S. F. Saterlie,M. L. Johnson, P. Alexopoulos, and J.G. Byrne: unpublished research, University of Utah, 1977.

  16. B. T. A. McKee, S. Siamoto, A. T. Stewart, and M. J. Stott:Can. J. Phys., 1974, vol. 52, p. 759.

    CAS  Google Scholar 

  17. J.D. McGervey and W. Triftshauser:Phys. Lett. A, 1973, vol. 44, no. l,p. 53.

    Article  CAS  Google Scholar 

  18. R. M. J. Cotterill, K. Peterson, G. Trumpy, and J. Traff:J. Phys. F., 1972, vol. 2, p. 459.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, M.L., Saterlie, S.F. & Byrne, J.G. The trapping of positrons by dislocations produced in single crystal bending. Metall Trans A 9, 841–845 (1978). https://doi.org/10.1007/BF02649794

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649794

Keywords

Navigation