Skip to main content
Log in

On the origin of microcracking behind a crack tip

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Calculations based on both linear elasticity and small scale yielding in an elastic-plastic body indicate that large normal stresses exist behind the tip of the main crack and are related to the presence of microcracks which intersect a fracture surface. This concept is applied to the specific case of microcracks which intersect a mixed mode I/II fatigue crack in Ti-40 at. pct V alloy single crystals. The microcracks, which occur on {110} and {111} planes, are associated with the radial distribution of stresses normal to the observed microcrack plane. In the Ti-40V alloy examined, microcracking may occur by cleavage on rarely observed {110} and {111} planes because of the combination of large normal stresses and flow at the microcrack tip which is controlled by the stress field imposed by the main crack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.D. Beachem:Trans. ASM, 1967, vol. 60, pp. 324–43.

    Google Scholar 

  2. H. Nordberg and B. Aronsson:Trans. ASM, 1968, vol. 61, pp. 627–29.

    Google Scholar 

  3. P. Gauthier, H. DeRaudy, and J. Auvinet:Eng. Fract. Mech., 1973, vol. 5, pp. 977–81.

    Article  CAS  Google Scholar 

  4. J.A. Carlson and D. A. Koss:Acta Met., 1978, vol. 26, pp. 123–32.

    Article  CAS  Google Scholar 

  5. D. G. Chakrapani and E. N. Pugh:Met. Trans. A, 1975, vol. 6A, pp. 1155–63.

    Article  CAS  Google Scholar 

  6. J. W. Hutchinson:J Mech. Phys. Solids, 1968, vol. 16, pp. 337–47.

    Article  Google Scholar 

  7. C. F. Shih:Fracture Analysis, ASTM STP 560, p. 187, ASTM, Philadelphia, 1974.

    Google Scholar 

  8. G. C. Sih, P. C.Paris, and G. R. Irwin:Int. J. Fract. Mech., 1965, vol. l,pp. 189–203.

    Google Scholar 

  9. L. Graham and G. Alers:The Physics of Solid Solution Strengthening, p. 204, Plenum Press, New York, 1975.

    Google Scholar 

  10. W. R. Tyson, R. A. Ayres, and D. F. Stein:Acta Met., 1973, vol. 21, pp. 621- 27.

    Article  Google Scholar 

  11. R. E. Peterson:Stress Concentration Factors, p. 22, John Wiley, New York, 1974.

    Google Scholar 

  12. W. F. Brown and J. E. Srawley:Plane Strain Crack Toughness Testing of High Strength Metallic Materials, ASTM STP 410, ASTM, Philadelphia, 1966.

    Google Scholar 

  13. H. Ta’da, P. C. Paris, and G. R. Irwin:The Stress Analysis of Cracks Handbook, pp. 2–29, Dell Research, Hellertown, Pa., 1973.

    Google Scholar 

  14. R. A. Wood and H. R. Ogden: DMIC Report 110, April 17, 1959.

  15. H. J. Rack:J. Mater. Tech., Trans. ASME, 1975, vol. 74, pp. 330–37.

    Google Scholar 

  16. J. F. McNeil and H. R. Limb:J. Inst. Metals, 1958-59, vol. 87, pp. 79–87.

    CAS  Google Scholar 

  17. D. A. Koss and C. C. Wojcik:Met. Trans. A, 1976, vol. 7A, pp. 1243–44.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stout, M.G., Koss, D.A. On the origin of microcracking behind a crack tip. Metall Trans A 9, 835–839 (1978). https://doi.org/10.1007/BF02649793

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649793

Keywords

Navigation