Skip to main content
Log in

Convection during thermally unstable solidification of Pb-Sn in a magnetic field

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Convection and macrosegregation in directionally solidified hypoeutectic Pb-38 wt pct Sn and hypereutectic Pb-64.5 wt pct Sn have been examined during upward and downward growth. Temperature fluctuations are observed along the length of the melt column during downward growth. With increasing Rayleigh number, these fluctuations change from none, to cyclic, to time periodic having multiple harmonics, and finally to random. At the higher convective driving force of 350 K temperature inversion, the transverse magnetic field decreased convective levels, strong random temperature fluctuations (flows) becoming smaller and periodic. The maximum field of 0.45 T was unable to completely eliminate convection. For the lower convective driving force of 150 K temperature inversion, the 0.05 T magnetic field decreased flows, and at 0.15 T, the field caused a dramatic decrease in the characteristic frequency of the temperature fluctuations, indicating a change in the nature of the flow, the waveform of the temperature fluctuations changing from sinusoidal to a pulsed wave. Temperature fluctuations and time delays between thermocouples were used to estimate flow velocities. Irrespective of the convection in the bulk melt (ahead of the mushy zone), longitudinal macrosegregation occurs only if the interdendritic melt mixes with the bulk melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.N. Tewari and R. Shah:Metall. Trans. A, 1992, vol. 23A, pp. 3383- 92.

    CAS  Google Scholar 

  2. S.N. Tewari, R. Shah, and M.A. Chopra:Metall. Trans. A, 1993, vol. 24A, pp. 1661–69.

    CAS  Google Scholar 

  3. J. Verhoeven:Metall. Trans., 1971, vol. 2, pp. 2673–80.

    CAS  Google Scholar 

  4. J.R. Sarazin and A. Hellawell:Metall. Trans. A, 1988, vol. 19A, pp. 1861–71.

    Google Scholar 

  5. W.J. Boettinger, F.S. Biancaniello, and S.R. Coriell:Metall. Trans. A, 1981, vol. 12A, pp. 321–27.

    Google Scholar 

  6. J.D. Verhoeven, J.T. Mason, and R. Trivedi:Metall. Trans. A, 1986, vol. 17A, pp. 991–1000.

    CAS  Google Scholar 

  7. S.N. Tewari and M.A. Chopra:Microgravity Sci. Technoi, 1990, vol. 3 (2), pp. 99–106.

    Google Scholar 

  8. R.M. Sharp and A. Hellawell:J. Cryst. Growth, 1970, vol. 10, pp. 29–32.

    Google Scholar 

  9. H. Jamgotchian, B. Billia, and L. Capella:J. Crystal Growth, 1987, vol. 82, pp. 342–50.

    Article  CAS  Google Scholar 

  10. L. Wang, V. Laxmanan, and J.F. Wallace:Metall. Trans. A, 1988, vol. 19A, pp. 2687–94.

    CAS  Google Scholar 

  11. K.M. Kim, A.F. Witt, and H.C. Gatos:J. Electrochem. Soc: Solid- State Sci. Technol., 1972, vol. 119 (9), pp. 1218–26.

    CAS  Google Scholar 

  12. A.K. Sample and A. Hellawell:Micro/Macro Scale Phenomena in Solidification, C. Beckerman, L.A. Bertram, S.J. Pien, and R. E. Smelser, eds., ASME, Fairfield, NJ, 1992, ASME-HTD-vol. 218, pp. 73–84.

    Google Scholar 

  13. T.D. McCay, M.H. McCay, S.A. Lowry, and L.M. Smith:J. Thermophysics Heat Transfer, 1989, vol. 3 (3), pp. 345–50.

    Article  Google Scholar 

  14. J.D. Verhoeven:The Physics of Fluids, 1969, vol. 12 (9), pp. 1733- 40.

    Article  Google Scholar 

  15. E.J. Harp and D.T.J. Hurle:Phil. Mag., 1968, vol. 17, pp. 1033–38.

    Article  Google Scholar 

  16. G. Muller, G. Neumann, and W. Weber:J. Cryst. Growth, 1984, vol. 70, pp. 78–93.

    Article  Google Scholar 

  17. G. Muller: inCrystals: Growth, Properties, and Applications, Springer, Berlin, 1988, vol. 12.

    Google Scholar 

  18. J.R. Carruthers:Preparation and Properties of Solid State MaterialsVol. 3, W.R. Wilcox and R.A. Lefever, eds., Marcel Dekker, Inc., New York, NY, 1977, pp. 1–113.

    Google Scholar 

  19. H.C. de Groh III:Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2507- 16.

    Google Scholar 

  20. M.D. Dupouy, D. Camel, and J.J. Favier:Acta Metall., 1989, vol. 37, pp. 1143–57.

    Article  CAS  Google Scholar 

  21. S.N. Tewari, R. Shah, and H. Song:Metall. Mater. Trans. A, 1994, vol. 25A, 1535–44.

    CAS  Google Scholar 

  22. M.H. Burden, DJ. Hebditch, and J.D. Hunt:J. Cryst. Growth, 1973, vol. 20, pp. 121–24.

    Article  CAS  Google Scholar 

  23. W.T. Mitchell and J.A. Quinn:AICHE J., 1966, vol. 12, pp. 1116- 24.

    Article  CAS  Google Scholar 

  24. D.J. Knuteson, A.L. Fripp, G.A. Woodell, and W.J. Debnam, Jr.:J. Cryst. Growth, 1991, vol. 109, pp. 127–32.

    Article  Google Scholar 

  25. Liquid Metals, S.Z. Beer, ed., Marcel Dekkar Inc., New York, NY, 1972, p. 186.

    Google Scholar 

  26. Thermophysical Properties of Matter, Y.S. Toloukianet al, eds., TPRC Data Series Vols. 1, 4, and 11, Purdue Research Foundation, IFI/Plenum, New York, NY 1970.

    Google Scholar 

  27. W.R. Wilcox: inFractional Solidification, M. Zief and W.R. Wilcox, eds., Dekkar, New York, NY, 1967, pp. 47–117.

    Google Scholar 

  28. M.H. Burden and J.D. Hunt:J. Cryst. Growth, 1974, vol. 22, pp. 109- 16.

    Article  CAS  Google Scholar 

  29. R. Trivedi:Metall. Trans. A, 1984, vol. 15A, pp. 977–82.

    CAS  Google Scholar 

  30. W. Kurz and D.J. Fisher:Acta Metall., 1981, vol. 29, p. 11.

    Article  CAS  Google Scholar 

  31. V. Laxmanan:J. Cryst. Growth, 1986, vol. 75, pp. 573–580.

    Article  CAS  Google Scholar 

  32. J.S. Kirkaldy:Scripta Metall., 1980, vol. 14, pp. 739–44.

    Article  Google Scholar 

  33. P. Pelce and A. Pumir:J. Cryst. Growth, 1985, vol. 73, pp. 337–42.

    Article  CAS  Google Scholar 

  34. L.H. Unger, M.J. Bennett, and R.A. Brown:Phys. Rev. B, 1985, vol. 31, pp. 5923–30.

    Article  Google Scholar 

  35. J.D. Hunt and D.G. McCartney:Acta Metall., 1987, vol. 35, pp. 89- 99.

    Article  Google Scholar 

  36. M.E. Glicksman:Microgravity Materials Science Conf, Huntsville, AL, May 24–25, 1994.

    Google Scholar 

  37. M.D. Dupouy, D. Camel, and J.J. Favier:Acta Metall., 1992, vol. 40 (7), pp. 1791–1801.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, H., Tewari, S.N. & de Groh, H.C. Convection during thermally unstable solidification of Pb-Sn in a magnetic field. Metall Mater Trans A 27, 1095–1110 (1996). https://doi.org/10.1007/BF02649778

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649778

Keywords

Navigation