Skip to main content
Log in

Modeling of sequential reactions during micropyretic synthesis

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A numerical model for a two-step sequential micropyretic reaction is reported. Such multiple reactions can take place during micropyretic synthesis of composite materials. The model was developed for the aluminothermic reaction between molybdenum oxide, aluminum, and silicon, which react to give molybdenum disilicide and aluminum oxide. The model was used to obtain the solution for the propagation of the combustion front. The melting of various constituents of reactants and products was incorporated into the model. The effect of the pre-exponential factor and the amount of diluent on the nature of propagation and temperature profile was investigated. Other conditions of propagation and synthesis for general two-step reactions were explored by changing the activation energy and heat release of each sequential reaction. A mapping procedure to characterize the types of sequential reactions is proposed and studied for several aluminothermic type reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C p :

specific heat, J/kg K

C pl :

specific heat of liquid phase, J/kg K

N i :

number of moles of componenti

E :

activation energy, J/mole

H :

enthalpy, J/kg

ΔH sl :

latent heat of fusion, J/kg

K 0 :

pre-exponential factor, s−1

K eff :

effective thermal conductivity, W/m K

K Reff :

effective thermal conductivity of reacted products, W/m K

K Ueff :

effective thermal conductivity of unreacted constituents, W/m K

Q :

heat of reaction, J/kg

R:

universal gas constant, J/mole K

T :

temperature, K

T m :

melting point, K

T 0 :

substrate temperature, K

T c :

combustion temperature corresponding to total heat released, K

T′ c :

combustion temperature corresponding to heat of first reaction, K

V f :

volume fraction

V :

propagation velocity, m/s

V 1(T c ):

analytically calculated velocity of first reaction atT c , m/s

V 1,(T c ):

analytically calculated velocity of first reaction atT c , m/s

V 2(T c ):

analytically calculated velocity of second reaction atT c , m/s

W f :

weight fraction

ε :

volume fraction of porosity

ρ :

density, kg/m3

ϕ :

heat release rate, J/m3s

ϕ 1(T c ):

heat release rate of first reaction atT c , J/m3sϕ 1(T′ c ) heat release rate of first reaction atT′ c , J/m3s

ϕ 2(T c ):

heat release rate of second reaction atT c K, J/m3s

ϕ 2(T′ c ):

heat release rate of second reaction atT c K, J/m3s

η :

fraction reacted

n :

new time level

o :

old time level

m :

iteration number

n :

northern side of control volume

N :

northern control volume

P :

center of current control volume

s :

southern side of control volume

S :

southern control volume

1:

first reaction

2:

second reaction

References

  1. H.P. Li and J.A. Sekhar:Advanced Synthesis of Engineered Structural Materials, J.J. Moore, E.J. Lavernia, and F.H. Froes, eds., ASM INTERNATIONAL, Materials Park, OH, 1993, p. 25.

    Google Scholar 

  2. Z.A. Munir:Am. Ceram. Soc. Bull, 1988, vol. 67 (2), p. 342.

    CAS  Google Scholar 

  3. H.C. Yi and J.J. Moore:J. Mater. Sci., 1990, vol. 25, p. 1159.

    CAS  Google Scholar 

  4. H.P. Li and J.A. Sekhar:J. Mater. Res., 1993, vol. 8 (10), p. 2515.

    CAS  Google Scholar 

  5. R.W. Rice:J. Mater. Sci., 1991, vol. 26, p. 6533.

    Article  CAS  Google Scholar 

  6. A. Bose, B.H. Rabin, and R.M. German:Powder Metall. Int., 1988, vol. 20 (3), p. 25.

    CAS  Google Scholar 

  7. M.G. Lakshmikantha and J.A. Sekhar:Metall. Trans. A, 1993, vol. 24A, p. 2515.

    Google Scholar 

  8. M.G. Lakshmikantha, A. Bhattacharya, and J.A. Sekhar:Metall. Trans. A, 1992, vol. 23A, pp. 23–34.

    CAS  Google Scholar 

  9. A.G. Merzhanov and B.I. Khaikin:Prog. Energy Combust. Sci., 1988, vol. 14, p. 1.

    Article  CAS  Google Scholar 

  10. M.G. Lakshmikantha and J.A. Sekhar:J. Mater. Sci., 1993, vol. 28, p. 6403.

    Article  CAS  Google Scholar 

  11. K.G. Shkadinskii, B.I. Khaikin, and A.G. Merzhanov:Combust. Explos. Shock Waves, 1971, vol. 7, p. 15.

    Article  Google Scholar 

  12. J. Puszynski, D. Degreve, and V. Hlavacek:Ind. Eng. Chem. Res., 1987, vol. 26, p. 1424.

    Article  CAS  Google Scholar 

  13. B.I. Khaikin, A.K. Filonenko, and S.I. Khudyaev:Combust. Explos. Shock Waves, 1968, vol. 4, p. 343.

    Article  Google Scholar 

  14. B.I. Khaikin, A.K. Filonenko, S.I. Khudyaev, and T.M. Martemyanov:Combust. Explos. Shock Waves, 1973, vol. 9, p. 144.

    Google Scholar 

  15. R.A. Cutler, A.V. Virkar, and J.B. Holt:Ceram. Eng. Sci., 1985, vol. 6, pp. 715.

    Article  CAS  Google Scholar 

  16. R. Abramovici:Mater. Sci. Eng., 1985, vol. 71, p. 313.

    Article  CAS  Google Scholar 

  17. L.L. Wang, Z.A. Munir, and Y.M. Maximov:J. Mater. Sci., 1993, vol. 28, p. 3693.

    Article  CAS  Google Scholar 

  18. J.B. Holt:Advances in Ceramics, vol. 21,Ceramic Powder Science, G.L. Messing, K.S. Mazgiyasni, J.W. McCauley, and R.A. Haber, eds., American Ceramic Society, Westerville, OH, 1987, p. 301.

    Google Scholar 

  19. G.V. Ivanov, V.G. Surkov, A.M. Viktorenko, A.A. Reshetov, and V.G. Ivanov:Combust. Explos. Shock Waves, 1979, vol. 15, p. 172.

    Article  Google Scholar 

  20. E.A. Balakir, Y.G. Bushuev, N.A. Baresko, A.E. Kosyakin, Y.V. Kudryavstev, and O.N. Federova:Combust. Explos. Shock Waves, 1975, vol. 11, p. 43.

    CAS  Google Scholar 

  21. I. Barin, O. Knacke, and O. Kubaschewski:Thermochemical Properties of Inorganic Substances, Springer-Verlag, New York, NY, 1973, p. 489.

    Google Scholar 

  22. E.A. Brandes and G.B. Brook:Smithells Metals Reference Book, Butterworth-Heinemann Ltd., London, 1992.

    Google Scholar 

  23. J. Subrahmanyam:J. Am. Ceram. Soc., 1993, vol. 76 (1), p. 226.

    Article  Google Scholar 

  24. V. Subramanian and J.A. Sekhar: University of Cincinnati, Cincinnati, OH, unpublished results, 1993.

  25. S. Zhang and Z.A. Munir:J. Mater. Sci., 1991, vol. 26, p. 3685.

    Article  CAS  Google Scholar 

  26. A.G. Merzhanov:Combust. Flame, 1969, vol. 13, p. 143.

    Article  CAS  Google Scholar 

  27. M.G. Lakshmikantha and J.A. Sekhar:J. Am. Ceram. Soc, 1994, vol. 77, p. 202.

    Article  CAS  Google Scholar 

  28. M. Fu and J.A. Sekhar: University of Cincinnati, Cincinnati, OH, unpublished results, 1993.

  29. T.S. Azatyan, V.M. Maltsev, A.G. Merzhanov, and V.A. Seleznev:Combust. Explos. Shock Waves, 1979, vol. 15, p. 35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Research Assistants, Department of Materials Science and Engineering

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subramanian, V., Lakshmikantha, M.G. & Sekhar, J.A. Modeling of sequential reactions during micropyretic synthesis. Metall Mater Trans A 27, 961–972 (1996). https://doi.org/10.1007/BF02649764

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649764

Keywords

Navigation