Skip to main content
Log in

A general enthalpy method for modeling solidification processes

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

In the present work, a general implicit source-based enthalpy method is presented for the analysis of solidification systems. The proposed approach is both robust and efficient. The performance of the method is illustrated by application to a number of problems taken from recent metallurgical literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a, b, d :

coefficients of the discretization equation

Bi:

discrete Biot number

c :

specific heat capacity

C :

concentration (also weight percent)

dH/dT :

slope of the enthalpy temperature curve

Fo:

discrete Fourier number

g :

volume fraction of liquid

h :

convective heat-transfer coefficient

H :

enthalpy

k :

thermal conductivity

L :

latent heat of fusion

p :

pressure

r:

residue vector of a system of equations

S :

source term

t :

time

T :

temperature

u, v :

velocities

E :

eutectic

F :

fusion point

inf:

ambient

ini:

initial

l :

liquid, liquidus

L :

liquidus

M:

melting point

nb :

neighboring nodes top

p :

node pointp

Pr:

Prandtl number

ref:

reference

s :

solid, solidus

wall:

ingot/mold boundary

m :

iteration level

old:

old time value

— 1:

inverse

β :

compressibility

p :

density

k :

partition coefficient

μ:

viscosity

References

  1. J. Crank:Free and Moving Boundary Problems, Clarendon Press, Oxford, United Kingdom, 1984.

    Google Scholar 

  2. A.J. Dalhuijsen and A. Segal:Int. J. Numer. Methods Eng., 1986, vol. 23, pp. 1807–29.

    Article  Google Scholar 

  3. V.R. Voller, C.R. Swaminathan, and B.G. Thomas:Int. J. Numer. Methods Eng., 1990, vol. 30, pp. 875–98.

    Article  Google Scholar 

  4. M. Rappaz:Int. Mater. Review, 1989, vol. 34, pp. 93–123.

    CAS  Google Scholar 

  5. M.C. Flemings:Solidification Processing, McGraw-Hill, New York, NY, 1974, pp. 160–63.

    Google Scholar 

  6. V.R. Voller and C.R. Swaminathan:Num. Heat Transfer, 1991, vol. 19B, pp. 175–90.

    Article  Google Scholar 

  7. D.R. Poirier and P. Nandapurkar:Metall. Trans. A, 1988, vol. 19A, pp. 3057–61.

    CAS  Google Scholar 

  8. G. Comini, S. Del Giudice, R.W. Lewis, and O.C. Zienkiewicz:Int. J. Numer. Methods Eng., 1974, vol. 8, pp. 613–24.

    Article  Google Scholar 

  9. N. Shamsundar and E.M. Sparrow:J. Heat Transfer, Trans. ASME, 1975, vol. 97, pp. 97–105.

    Google Scholar 

  10. W.D. Rolph III and K.J. Bathe:Int. J. Numer. Methods Eng., 1982, vol. 18, pp. 119–34.

    Article  Google Scholar 

  11. V.R. Voller and C. Prakash:Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 1709–19.

    Article  CAS  Google Scholar 

  12. A.D. Brent, V.R. Voller, and K.J. Reid:Numer. Heat Transfer, 1988, vol. 13, pp. 297–318.

    Article  Google Scholar 

  13. M. Salcudean and Z. Abdullah:Int. J. Numer. Methods Eng., 1988, vol. 28, pp. 445–73.

    Article  Google Scholar 

  14. V.R. Voller:Numer. Heat Transfer, 1990, vol. 17B, pp. 115–29.

    Google Scholar 

  15. B.G. Thomas, I.V. Samarasekera, and J.K. Brimacombe:Metall. Trans. B, 1984, vol. 15B, pp. 307–18.

    CAS  Google Scholar 

  16. T.W. Clyne:Mater. Sci. Eng., 1984, vol. 65, pp. 111–24.

    Article  CAS  Google Scholar 

  17. B. Basu and J.A. Sekhar:Metall. Trans. A, 1989, vol. 20A, pp. 1833–45.

    CAS  Google Scholar 

  18. B. Lally, L. Biegler, and H. Henein:Metall. Trans. B, 1990, vol. 21B, pp. 761–70.

    CAS  Google Scholar 

  19. J.J. Droux:Com. Methods Appl. Mech. Eng., 1991, vol. 85, pp. 57–74.

    Article  Google Scholar 

  20. A.R. Mitchell and D.F. Griffiths:The Finite Difference Method in Partial Differential Equations, John Wiley, New York, NY, 1985.

    Google Scholar 

  21. S.V. Patankar:Numerical Heat Transfer and Fluid Flow, McGraw- Hill, New York, NY, 1980.

    Google Scholar 

  22. O.C. Zienkiewicz and R.L. Taylor:The Finite Element Method, McGraw-Hill, New York, NY, 1989.

    Google Scholar 

  23. D.D. Goettsch and J.A. Dantzig: inMaterials Processing in the Computer Age, V.R. Voller, M.S. Stachowicz, and B.G. Thomas, eds., TMS, Warrendale, PA, 1991, pp. 327–34.

    Google Scholar 

  24. D.M. Stefanescu and C.S. Kanetkar:Trans. Am. Foundrymen’s Soc, 1987, vol. 95, pp. 139–44.

    CAS  Google Scholar 

  25. C. Gau and R. Viskanta:Int. J. Heat Mass Transfer, 1984, vol. 27, pp. 113–23.

    Article  CAS  Google Scholar 

  26. Q.T. Pham:Int. J. Heat Mass Transfer, 1986, vol. 29, pp. 285–91.

    Article  Google Scholar 

  27. G. Comini, S. Del Giudice, and O. Saro:Int. J. Numer. Methods Eng., 1990, vol. 30, pp. 697–709.

    Article  Google Scholar 

  28. K. Morgan, R.W. Lewis, and O.C. Zienkiewicz:Int. J. Numer. Methods Eng., 1978, vol. 12, pp. 1191–95.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swaminathan, C.R., Voller, V.R. A general enthalpy method for modeling solidification processes. Metall Trans B 23, 651–664 (1992). https://doi.org/10.1007/BF02649725

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649725

Keywords

Navigation