Abstract
In the present work, a general implicit source-based enthalpy method is presented for the analysis of solidification systems. The proposed approach is both robust and efficient. The performance of the method is illustrated by application to a number of problems taken from recent metallurgical literature.
Similar content being viewed by others
Abbreviations
- a, b, d :
-
coefficients of the discretization equation
- Bi:
-
discrete Biot number
- c :
-
specific heat capacity
- C :
-
concentration (also weight percent)
- dH/dT :
-
slope of the enthalpy temperature curve
- Fo:
-
discrete Fourier number
- g :
-
volume fraction of liquid
- h :
-
convective heat-transfer coefficient
- H :
-
enthalpy
- k :
-
thermal conductivity
- L :
-
latent heat of fusion
- p :
-
pressure
- r:
-
residue vector of a system of equations
- S :
-
source term
- t :
-
time
- T :
-
temperature
- u, v :
-
velocities
- E :
-
eutectic
- F :
-
fusion point
- inf:
-
ambient
- ini:
-
initial
- l :
-
liquid, liquidus
- L :
-
liquidus
- M:
-
melting point
- nb :
-
neighboring nodes top
- p :
-
node pointp
- Pr:
-
Prandtl number
- ref:
-
reference
- s :
-
solid, solidus
- wall:
-
ingot/mold boundary
- m :
-
iteration level
- old:
-
old time value
- — 1:
-
inverse
- β :
-
compressibility
- p :
-
density
- k :
-
partition coefficient
- μ:
-
viscosity
References
J. Crank:Free and Moving Boundary Problems, Clarendon Press, Oxford, United Kingdom, 1984.
A.J. Dalhuijsen and A. Segal:Int. J. Numer. Methods Eng., 1986, vol. 23, pp. 1807–29.
V.R. Voller, C.R. Swaminathan, and B.G. Thomas:Int. J. Numer. Methods Eng., 1990, vol. 30, pp. 875–98.
M. Rappaz:Int. Mater. Review, 1989, vol. 34, pp. 93–123.
M.C. Flemings:Solidification Processing, McGraw-Hill, New York, NY, 1974, pp. 160–63.
V.R. Voller and C.R. Swaminathan:Num. Heat Transfer, 1991, vol. 19B, pp. 175–90.
D.R. Poirier and P. Nandapurkar:Metall. Trans. A, 1988, vol. 19A, pp. 3057–61.
G. Comini, S. Del Giudice, R.W. Lewis, and O.C. Zienkiewicz:Int. J. Numer. Methods Eng., 1974, vol. 8, pp. 613–24.
N. Shamsundar and E.M. Sparrow:J. Heat Transfer, Trans. ASME, 1975, vol. 97, pp. 97–105.
W.D. Rolph III and K.J. Bathe:Int. J. Numer. Methods Eng., 1982, vol. 18, pp. 119–34.
V.R. Voller and C. Prakash:Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 1709–19.
A.D. Brent, V.R. Voller, and K.J. Reid:Numer. Heat Transfer, 1988, vol. 13, pp. 297–318.
M. Salcudean and Z. Abdullah:Int. J. Numer. Methods Eng., 1988, vol. 28, pp. 445–73.
V.R. Voller:Numer. Heat Transfer, 1990, vol. 17B, pp. 115–29.
B.G. Thomas, I.V. Samarasekera, and J.K. Brimacombe:Metall. Trans. B, 1984, vol. 15B, pp. 307–18.
T.W. Clyne:Mater. Sci. Eng., 1984, vol. 65, pp. 111–24.
B. Basu and J.A. Sekhar:Metall. Trans. A, 1989, vol. 20A, pp. 1833–45.
B. Lally, L. Biegler, and H. Henein:Metall. Trans. B, 1990, vol. 21B, pp. 761–70.
J.J. Droux:Com. Methods Appl. Mech. Eng., 1991, vol. 85, pp. 57–74.
A.R. Mitchell and D.F. Griffiths:The Finite Difference Method in Partial Differential Equations, John Wiley, New York, NY, 1985.
S.V. Patankar:Numerical Heat Transfer and Fluid Flow, McGraw- Hill, New York, NY, 1980.
O.C. Zienkiewicz and R.L. Taylor:The Finite Element Method, McGraw-Hill, New York, NY, 1989.
D.D. Goettsch and J.A. Dantzig: inMaterials Processing in the Computer Age, V.R. Voller, M.S. Stachowicz, and B.G. Thomas, eds., TMS, Warrendale, PA, 1991, pp. 327–34.
D.M. Stefanescu and C.S. Kanetkar:Trans. Am. Foundrymen’s Soc, 1987, vol. 95, pp. 139–44.
C. Gau and R. Viskanta:Int. J. Heat Mass Transfer, 1984, vol. 27, pp. 113–23.
Q.T. Pham:Int. J. Heat Mass Transfer, 1986, vol. 29, pp. 285–91.
G. Comini, S. Del Giudice, and O. Saro:Int. J. Numer. Methods Eng., 1990, vol. 30, pp. 697–709.
K. Morgan, R.W. Lewis, and O.C. Zienkiewicz:Int. J. Numer. Methods Eng., 1978, vol. 12, pp. 1191–95.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Swaminathan, C.R., Voller, V.R. A general enthalpy method for modeling solidification processes. Metall Trans B 23, 651–664 (1992). https://doi.org/10.1007/BF02649725
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02649725