Skip to main content
Log in

Laser-Clad NiAICrHf alloys with improved alumina scale retention

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

A new mechanism for the improved retention of alumina scales formed on laser-clad NiAICrHf alloys has been observed. Laser cladding is the process where fine metal powders are rapidly melted and fused to a solid substrate using a CO2 laser. The effects of laser cladding upon scale retention on NiAICrHf alloys after cyclic and isothermal exposure to air were investigated using thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The calculated compressive stress in the scale due to constrained cooling exceeded the probable compressive strength of alumina. Additions of up to ≈ 2.5 wt pct Hf increasingly promote retention of scales grown at 1200 °C, with laser-clad samples of ≈ 2.5 wt pct Hf alloy retaining almost completely intact scales. The improvement in scale retention is due to improved toughness in scales containing hafnia polycrystallites, possiblyvia microcracking initiated by anisotropic thermal contraction of the hafnia. Laser cladding the 2.5 wt pct Hf alloy provides a large concentration of ~ 1 µm Hf-rich particles that are precursors of the hafnia in the scale as well as a finer dendrite spacing that reduces the mean free distance between particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Ribaudo, S. Sircar, and J. Mazumder:Metall. Trans. A, 1989, vol. 20A, pp. 2489–97.

    CAS  Google Scholar 

  2. P.A. Kofstad, A. Rahmel, R.A. Rapp, and D.L. Douglass:Oxid. Met., 1989, vol. 32, p. 125.

    Article  Google Scholar 

  3. D.P. Whittle and J. Stringer:Phil. Trans. R. Soc, 1980, vol. A295, p. 309.

    Google Scholar 

  4. I.M. Allam, D.P. Whittle, and J. Stringer:Corrosion and Erosion of Metals, K. Natesan, ed., TMS-AIME, Warrendale, PA, 1980, p. 103.

    Google Scholar 

  5. J.K. Tien and F.S. Pettit:Metall. Trans., 1972, vol. 3, pp. 1587–99.

    Article  CAS  Google Scholar 

  6. J.G. Smeggil, A.W. Funkenbusch, and N.S. Bomstein:Metall. Trans. A, 1986, vol. 17A, pp. 923–32.

    CAS  Google Scholar 

  7. J.L. Smialek:N.L. Peterson Memorial Symp.: Oxidation of Metals and Associated Mass Transport, M.A. Dayananda, S.J. Rothman, and W.E. King, eds., TMS-AIME, Warrendale, PA, 1987, p. 297.

    Google Scholar 

  8. D.R. Sigler:Oxid. Met., 1988, vol. 29, p. 23.

    Article  CAS  Google Scholar 

  9. D.R. Sigler:Oxid. Met., 1989, vol. 32, p. 337.

    Article  CAS  Google Scholar 

  10. J.C. Smialek:Metall. Trans. A, 1991, vol. 22A, pp. 739–52.

    CAS  Google Scholar 

  11. H. Pfeiffer:Werkstoffe Korros., 1957, vol. 8, p. 594.

    Article  Google Scholar 

  12. F.A. Golightly, F.H. Stott, and G.C. Wood:Oxid. Met., 1976, vol. 10, p. 163.

    Article  CAS  Google Scholar 

  13. K.L. Luthra and C.L. Briant:Oxid. Met., 1986, vol. 26, p. 397.

    Article  CAS  Google Scholar 

  14. S. Sircar, C. Ribaudo, and J. Mazumder:Metall. Trans. A, 1989, vol. 20A, pp. 2261–11.

    Google Scholar 

  15. A. Kumar, M. Nasrallah, and D.L. Douglass:Oxid. Met., 1974, vol. 8, p. 227.

    Article  CAS  Google Scholar 

  16. C.S. Giggins and F.S. Pettit:J. Electrochem. Soc, 1971, vol. 118, p. 1782.

    Article  CAS  Google Scholar 

  17. E.E Underwood:Quantitative Stereology, Addison-Wesley, Reading, MA, 1970, p. 109.

    Google Scholar 

  18. B. Pieraggi:Oxid. Met., 1987, vol. 27, p. 177.

    Article  CAS  Google Scholar 

  19. W.D. Kingery, H.K. Bowen, and D.R. Uhlmann:Introduction to Ceramics, 2nd ed., John Wiley and Sons, New York, NY, 1976, p. 819.

    Google Scholar 

  20. G.V. Samsonov:The Oxide Handbook, IFI/Plenum, New York, NY, 1973, pp. 225 and 233.

    Google Scholar 

  21. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and T.Y.R. Lee:Thermalphysical Properties of Matter: Thermal Expansion of Non-Metallic Solids, IFI/Plenum, New York, NY, 1977, vol. 13, pp. 252 and 451.

    Google Scholar 

  22. Y.S. Touloukian, R.W. Powell, C.Y. Ho, and M.C. Nicoleau:Thermalphysical Properties of Matter: Thermal Diffusivity, IFI/ Plenum, New York, NY, 1973, vol. 10, p. 378.

    Google Scholar 

  23. C.H. Hsueh and A.G. Evans:Ceramic Containing Systems: Mechanical Aspects of Interfaces and Systems, A.G. Evans, ed., Noyes Publications, Park Ridge, NJ, 1986, p. 176.

    Google Scholar 

  24. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and P.D. Desai:Thermalphysical Properties of Matter: Thermal Expansion of Metallic Elements and Alloys, IFI/Plenum, New York, NY, 1975, vol. 12, p. 1216.

    Google Scholar 

  25. R.J. Stokes:Fracture: An Advanced Treatise, H. Leibowitz, ed., Academic Press, New York, NY, 1972, p. 157.

    Google Scholar 

  26. R.L. Coble and N.M. Parikh:Fracture: An Advanced Treatise, H. Leibowitz, ed., Academic Press, New York, NY, 1972, p. 245.

    Google Scholar 

  27. D.P.H. Hasselman:J. Am. Ceram. Soc., 1969, vol. 52, p. 600.

    Article  CAS  Google Scholar 

  28. R.C. Garvie and M.F. Goss:Advanced Ceramics II, S. Somiya, ed., Elsevier Applied Science, New York, NY, 1988, p. 69.

    Google Scholar 

  29. F.J.P. Clarke, H.G. Tattersall, and G. Tappin:Proc Br. Cer. Soc., 1966, vol. 6, p. 163.

    Google Scholar 

  30. S.L. Dole, O. Hunter, F.W. Calderwood, and D.J. Bray:J. Am. Ceram. Soc., 1978, vol. 61, p. 486.

    Article  CAS  Google Scholar 

  31. A.G. Evans:Science and Technology of Zirconia II, N. Claussen, M. Rühle, and A. Heuer, eds., American Ceramic Society, Columbus, OH, 1984, p. 193.

    Google Scholar 

  32. M.V. Swain:Advanced Ceramics II, S. Somiya, ed., Elsevier Applied Science, New York, NY, 1988, p. 45.

    Google Scholar 

  33. I.-Wei. Chen and V.-H. Chiao:Science and Technology of Zirconia II, N. Claussen, M. Rühle, and A. Heuer, eds., American Ceramic Society, Columbus, OH, 1984, p. 33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Research Assistant, Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribaudo, C.R., Mazumder, J. & Hetzner, D.W. Laser-Clad NiAICrHf alloys with improved alumina scale retention. Metall Trans B 23, 513–522 (1992). https://doi.org/10.1007/BF02649670

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649670

Keywords

Navigation