Skip to main content
Log in

Activity of carbon in nickel-rich Ni-Mo and Ni-W alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Effects of molybdenum and tungsten on carbon activity in nickel have been experimentally determined at 1000, 1100, and 1200 °C. Seventeen nickel-molybdenum and thirteen nickel-tungsten binary alloys were carburized in a flow of purified methane and hydrogen mixed gas. A sealed capsule technique was also employed for carburization of a few series of nickel-molybdenum alloys. The carbon concentration was determined either by hot extraction techniques (LECO and Coulomatic) or by weight gains of these specimens. The carbon concentration at a constant carbon activity decreases with increasing either molybdenum or tungsten concentration in nickel. The effect of tungsten on the carbon solubility in nickel is slightly larger than that of molybdenum. The experimental data were analyzed in terms of the regular solution model with two sublattices due to Hillert and Staffansson. Temperature dependence of the interaction coefficients between carbon and molybdenum or tungsten was expressed as DGMo/RT = −4.45 + 11650/T andDG W /R = 1.21 + 9010/.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Murakami, S. Takeda, K. Mutsuzaki, and T. Murase:Nippon Kinzoku Gakkai Shi (J. Japan Inst. Metals), 1940, vol. 4, pp. 189–98.

    CAS  Google Scholar 

  2. W. Köster and S. Kabermann:Arch. Eisenhüttenwessen, 1955, vol. 26, pp. 627–30.

    Google Scholar 

  3. K. Löbl, H. Tůma, and M. Ciznerova:Mém. Sci. Rev. Métall., 1974, vol. 71, pp. 271–79.

    Google Scholar 

  4. A. C. Fraker and H. H. Stadelmaier:TMS-AIME, 1969, vol. 245, pp. 847–50.

    CAS  Google Scholar 

  5. M. L. Fiedler and H. H. Stadelmaier:Z. Metallkde., 1975, vol. 66, pp. 402–04.

    CAS  Google Scholar 

  6. M. Hillert and L. I. Staffansson:Acta Chem. Scand., 1970, vol. 24, pp. 3618–26.

    Article  CAS  Google Scholar 

  7. Metals Handbook, ASM, Metals Park, OH, 1973, vol. 8, p. 319, p. 326.

  8. R. P. Smith:TMS-AIME, 1960, vol. 218, pp. 62–64.

    CAS  Google Scholar 

  9. T. Wada, H. Wada, J. F. Elliott, and J. Chipman:Metall. Trans., 1971, vol. 2, pp. 2199–2208.

    CAS  Google Scholar 

  10. S. Takeda: Doctor of Engineering Thesis, Tokyo Institute of Technology, 1978.

  11. A. J. Heckler and P. G. Winchell:TMS-AIME, 1963, vol. 227, pp. 732–36.

    CAS  Google Scholar 

  12. T. Nishizawa: Swedish Council Appl. Res. Rep. (4602), 1967.

  13. B. Uhrenius:Scand. J. Met., 1973, vol. 2, pp. 177–82.

    CAS  Google Scholar 

  14. S. Ban-ya, J. F. Elliott, and J. Chipman:Metall. Trans., 1970, vol. 1, pp. 1313–20.

    CAS  Google Scholar 

  15. B. Uhrenius:Proc. Hardenabilit Concepts with Applications to Steel,TMS-AIME, Warrendale, PA, 1978, pp. 28–81.

    Google Scholar 

  16. K. Löbl and H. Tůma:Mém. Sci. Rev. Métall., 1970, vol. 67, pp. 11–16.

    Google Scholar 

  17. T. Johansson and B. Uhrenius:Metal Sci., 1978, pp. 83–94.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, Department of Metallurgical Engineering, Tokyo Institute of Technology

Formerly Professor, Department of Metallurgical Engineering, Tokyo Institute of Technology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kikuchi, M., Takeda, S., Kajihara, M. et al. Activity of carbon in nickel-rich Ni-Mo and Ni-W alloys. Metall Trans A 19, 645–650 (1988). https://doi.org/10.1007/BF02649278

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649278

Keywords

Navigation