Skip to main content
Log in

Modeling of thermomechanical processing of heat-treatable aluminum alloys

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

This paper describes formulation of a model for calculating recrystallized grain size for heat-treatable aluminum alloys subjected to thermomechanical processing for grain size control. When combined with Zerer's equation for the limiting grain size during grain growth in particle-containing materials, the model can be used to calculate the stable grain size after thermomechanical processing. A set of adjunct models and experimental observations have been used to relate alloy composition and processing parameters to the intermediate variables which are inputs to the model for recrystallized grain size. Model results are compared with experimental data from various sources. Modeling results exhibit all of the trends observed in the experimentally-determined grain sizes for AA7075, for AA6063, and for modified AA7475 alloys containing different dispersoid-forming additions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. J. Humphreys:Acta Metall., 1978, vol. 25, pp. 1323–44.

    Google Scholar 

  2. F.J. Humphreys:Metal Science, 1979, vol. 13, pp. 136–45.

    CAS  Google Scholar 

  3. F.J. Humphreys: “Nucleation of Recrystallization in Metals and Alloys,” 1st Risø Int. Symp. on Metallurgy and Materials Science,Roskilde, Denmark, 1980, pp. 35–44.

    Google Scholar 

  4. R. Sandstrom: “Criteria for Nucleation of Recrystallization Around Particles,” 1st Risø Int. Symp. on Metallurgy and Materials Science, Roskilde, Denmark, 1980, pp. 45–49.

    Google Scholar 

  5. R. Sandstrom:Z. Metallkde., 1980, vol. 71, pp. 681–88.

    Google Scholar 

  6. R. D. Doherty: “Nucleation of Recrystallization in Single Phase and Dispersion Hardened Polycrystalline Materials,” 1st Risø Int. Symp. on Metallurgy and Materials Science, Roskilde, Denmark, 1980,pp. 57–69.

    Google Scholar 

  7. C. S. Smith:Trans. AIME, 1948, vol. 175, pp. 15–48.

    Google Scholar 

  8. M. F. Ashby, J. Harper, and J. Lewis:Trans. AIME, 1969, vol. 245, pp. 413–20.

    CAS  Google Scholar 

  9. C. J. Tweed, B. Ralph, and N. Hansen:Acta Metall., 1984, vol. 32, pp. 1407–14.

    Article  CAS  Google Scholar 

  10. E. Nes, N. Ryum, and O. Hundert:Acta Metall., 1985, vol. 33, pp. 11–22.

    Article  CAS  Google Scholar 

  11. J. Waldman, H. Sulinski, and H. Markus:Metall. Trans., 1974, vol. 5, pp. 573–84.

    Article  CAS  Google Scholar 

  12. J. Waldman, H. Sulinski, and H. Markus: “Thermomechanical Processing of Aluminum Alloy Ingots”, inAluminum Alloys in the Aircraft Industry, Technicopy Ltd., Gloucestershire, 1976, pp. 105–14.

    Google Scholar 

  13. J. A. Wert, N.E. Paton, C.H. Hamilton, and M.W. Mahoney:Metall. Trans. A, 1981, vol. 12A, pp. 1267–76.

    Google Scholar 

  14. J. C. Williams and E. A. Starke, Jr.: “The Role of Thermomechanical Processing in Tailoring the Properties of Aluminum and Titanium Alloys”, in Deformation, Processing and Structure, ASM, Metals Park, OH, 1982, pp. 279–354.

    Google Scholar 

  15. J. A. Wert:Thermomechanical Processing of Heat-Treatable Aluminum Alloys for Grain Size Control, E. H. Chia and H. J. McQueen,eds., TMS-AIME, Warrendale, PA, 1982, pp. 67–94.

    Google Scholar 

  16. E. Nes:Scripta Metall., 1976, vol. 10, pp. 1025–28.

    Article  CAS  Google Scholar 

  17. E. Nes:Acta Metall., 1976, vol. 24, pp. 391–98.

    Article  CAS  Google Scholar 

  18. E. Nes:Grain Size and Texture Control in Commercial Aluminum Alloys, Proc. 7th Int. Light Metals Congress, Leoben/Vienna, 1981, pp. 154–55.

  19. R. Sandstrom:Z. Metallkde., 1980, vol. 71, pp. 741–51.

    Google Scholar 

  20. E. Nes and S. Slevlden:Aluminum, 1979, vol. 55, pp. 319–24.

    CAS  Google Scholar 

  21. E. Nes:Metalurgia I. Odlwunictwo, 1979, vol. 5, pp. 209–24.

    CAS  Google Scholar 

  22. E. Nes: “Recrystallization in Alloys with Bimodal Particle Size Distributions,” in Proc. 1st Risø Int. on Metallurgy and Materials Science,Roskilde, Denmark, 1980, pp. 85–95.

    Google Scholar 

  23. E. Nes and J. A. Wert:Scripta Metall., 1984, vol. 18, pp. 1433–38.

    Article  CAS  Google Scholar 

  24. R. D. Doherty:Metal Science, 1974, vol. 8, pp. 132–42.

    CAS  Google Scholar 

  25. B. Bay and N. Hansen:Metall. Trans. A, 1978, vol. 10A, pp. 279–88.

    Google Scholar 

  26. D. J. Lloyd and D. M. Moore: “Aluminum Alloy Design for Superplasticity”, inSuperplastic Forming of Structural Alloys, N. E. Paton and C.H. Hamilton, eds., TMS-AIME, Warrendale, PA, 1982,pp. 147–72.

    Google Scholar 

  27. R. Kaspar and J. Pluhar:Metal Science, 1975, vol. 9, pp. 104–10.

    Article  CAS  Google Scholar 

  28. M. Avrami:J. Chem. Phys., 1939, vol. 7, pp. 1103–12; 1940, vol. 8, pp. 212-24; 1941, vol. 9, pp. 177-84.

    Article  CAS  Google Scholar 

  29. W. A. Johnson and R. F. Mehl:Trans. AIME, 1939, vol. 135, pp. 416–42.

    Google Scholar 

  30. J. W. Cahn:Acta Metall., 1956, vol. 4, pp. 449–59.

    Article  CAS  Google Scholar 

  31. M. M. Popov, E.N. Tikhomina, S.M. Skuratovand, and E. N. Kalinina:Phys. Met. Metallog., 1959, vol. 8, no. 1, pp. 87–95.

    Google Scholar 

  32. C. M. Adam and A. Wolfenden:Acta Metall., 1978, vol. 26, pp. 1307–15.

    Article  CAS  Google Scholar 

  33. T. Araki and S. Komori:Trans. National Res. Inst. Metals (Japan), 1968, vol. 10, no. 2, pp. 75–78.

    CAS  Google Scholar 

  34. H. Westengen, L. Auran, and O. Reiso:Aluminium, 1981, vol. 57, pp. 797–803.

    CAS  Google Scholar 

  35. O. Reiso, H. Westengen, and L. Auran: “Effect of Si Additions on Precipitation and Recrystallization in Al-0.18wt%Zr Alloys,” inAluminum Alloys in the Aircraft Industry, Technicopy Ltd.,Gloucestershire, 1976, pp. 186–88.

    Google Scholar 

  36. M. B. Bever, D. L. Holt, and A. L. Titchener:Prog. Mat. Sci., 1973, vol. 17, pp. 5–177.

    Article  Google Scholar 

  37. C. G. Cordovilla and E. Louis:Scripta Metall., 1984, vol. 18, pp. 549–53.

    Article  Google Scholar 

  38. B. M. Watts, M. J. Stowell, B. L. Baikie, and D. G. E. Owen:Metal Science, 1976, vol. 10, pp. 189–97; 1976, vol. 10, pp. 198-206.

    Article  CAS  Google Scholar 

  39. R. H.Bricknell and J. W. Edington:Metall. Trans. A, 1979, vol. 10A, pp. 1257–63.

    Google Scholar 

  40. C. C. Bampton, J. A. Wert, and M.W. Mahoney:Metall. Trans. A, 1982, vol. 13A, pp. 193–98.

    CAS  Google Scholar 

  41. I. M. Lifshitz and V.V. Slyozov:J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–50.

    Article  Google Scholar 

  42. C. Wagner:Z. Electrochem., 1961, vol. 65, pp. 581–91.

    CAS  Google Scholar 

  43. J. W. Martin and R. D. Doherty:Stability of Microstructure inMetallic Systems, Cambridge University Press, Cambridge, 1976, pp. 154–209.

    Google Scholar 

  44. G. J. Shiflet, H. I. Aaronson, and T. H. Courtney:Acta Metall., 1979, vol. 27, pp. 377–85.

    Article  CAS  Google Scholar 

  45. A. D. Brailsford and P. Wynblatt:Acta Metall., 1979, vol. 27, pp. 489–97.

    Article  CAS  Google Scholar 

  46. C. K. L. Davies, P. Nash, and R. N. Stevens:Acta Metall., 1980, vol. 28, pp. 179–89.

    Article  CAS  Google Scholar 

  47. L. F. Murr:Interfacial Phenomena in Metals and Alloys, Addison-Wesley, Reading, 1975, p. 131.

    Google Scholar 

  48. C. H. Hamilton, C. C. Bampton, and N. E. Paton: “Superplasticity in High-Strength Aluminum Alloys”, inSuperplastic Forming of Structural Alloys, N.E. Paton and C.H. Hamilton, eds., TMS-AIME,Warrendale, PA, 1982, pp. 173–89.

    Google Scholar 

  49. B.R. Ward and S.P. Agrawal: U.S. Patent No. 4,486,244, Dec. 4, 1984.

  50. M. Kobayashi, M. Miyagawa, N. Furushiro, K. Matsuki, and Y. Nakazawa: “State of Fundamental and Industrial Research in Super-plasticity in Japan”, inSuperplasticite, B. Baudelet and M. Suery,eds., Editions du CNRS, Paris, 1985, pp. 12.1–12.15.

    Google Scholar 

  51. J. S. Washfold, I. R. Dover, and I. J. Polmear:Metals Forum, 1985, vol. 8, pp. 56–59.

    CAS  Google Scholar 

  52. S.P. Agrawal and T.J. Ginter: Contract No. NASI-17623, First Interim Technical Report, May 1984; Second Interim Technical Report, Nov. 1984.

  53. H. M. Chan and F.J. Humphreys:Acta Metall., 1984, vol. 32, pp. 235–43.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wert, J.A., Austin, L.K. Modeling of thermomechanical processing of heat-treatable aluminum alloys. Metall Trans A 19, 617–625 (1988). https://doi.org/10.1007/BF02649275

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649275

Keywords

Navigation