Skip to main content
Log in

Fatigue crack propagation in aluminum- lithium alloy 2090: Part I. long crack behavior

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A study has been made of the mechanics and mechanisms of fatigue crack propagation in a commercial plate of aluminum-lithium alloy 2090-T8E41. In Part I, the crack growth and crack shielding behavior of long (≳5 mm) through-thickness cracks is examined as a function of plate orientation and load ratio, and results compared to traditional high strength aluminum alloys. It is shown that rates of fatigue crack extension in 2090 are, in general, significantly slower (at a given stress intensity range) than in traditional alloys, although behavior is strongly anisotropic. Differences in growth rates of up to 4 orders of magnitude are observed between the L-T, T-L, and T-S orientations, which show the best crack growth resistance, and the S-L, S-T, and L + 45, which show the worst. Such behavior is attributed to the development of significant crack tip shielding (i.e., a reduction in local crack driving force), primarily resulting from the role of the crack path morphology in inducing crack deflection and crack closure from the consequent asperity wedging. Whereas crack advance perpendicular to the rolling plane (e.g., L-T,etc.) involves marked crack path deflection and branching, thereby promoting very high levels of shielding to cause the slowest growth rates, fatigue fractures parallel to the rolling plane (e.g., S-L,etc.) occur by an intergranular, delamination-type separation, with much lower shielding levels to give the fastest growth rates. The implications of such “extrinsic toughening” effects on the fracture and fatigue properties of aluminum-lithium alloys are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “Aluminum-Lithium Alloys”, Proc. First Intl. Conf., Stone Mountain, GA, T. H. Sanders and E. A. Starke, eds., TMS-AIME, Warrendale, PA, 1981.

  2. “Aluminum-Lithium Alloys II”, Proc. Second Intl. Conf., Monterey, CA, T. H. Sanders and E. A. Starke, eds., TMS-AIME, Warrendale, PA, 1983.

  3. “Aluminum-Lithium Alloys III”, Proc. Third Intl. Conf., Oxford, U.K., C. Baker, P. J. Gregson, S. J. Harris, and C. J. Peel, eds., Institute of Metals, London, U.K., 1986.

  4. J. Glazer, S. L. Verzasconi, E.N.C. Dalder, W. Yu, R.A. Emigh, R. O. Ritchie, and J. W. Morris:Advances in Cryogenic Engineering, 1986, vol. 32, pp. 397–404.

    CAS  Google Scholar 

  5. E. J. Coyne, T. H. Sanders, and E. A. Starke: in Ref. 1, pp. 293–305.

  6. S. J. Harris, B. Noble, and K. Dinsdale: in Ref. 2, pp. 219–33.

  7. A.K. Vasudévan, P. E. Bretz, A. C. Miller, and S. Suresh:Mater. Sci. Eng., 1984, vol. 64, pp. 113–22.

    Article  Google Scholar 

  8. G. R. Chanani, G. V. Scarich, and K. M. Bresnahan: inMechanical Properties and Phase Transformations in Engineering Materials, S. D. Antolovich, R. O. Ritchie, and W. W. Gerberich, eds., TMS- AIME, Warrendale, PA, 1986, pp. 271–91.

    Google Scholar 

  9. K. V. Jata and E. A. Starke, Jr.:Metall. Trans. A, 1986, vol. 17A, pp. 1011–26.

    CAS  Google Scholar 

  10. J. Petit, S. Suresh, A. K. Vasudévan, and R. C. Malcolm: in Ref. 3, pp. 257–62.

  11. M. Peters, K. Welpmann, W. Zink, and T. H. Sanders: in Ref. 3, pp. 239–46.

  12. W. Yu and R. O. Ritchie:J. Eng. Matls. Tech., Trans. ASME, Series H, 1987, vol. 109, pp. 81–85.

  13. R. C. Dorward:Scripta Metall., 1986, vol. 20, pp. 1379–83.

    Article  CAS  Google Scholar 

  14. D. Webster, G. Wald, and W. S. Cremens:Metall. Trans. A, 1981, vol. 12A, pp. 1495–502.

    Google Scholar 

  15. K. T. Venkateswara Rao, W. Yu, and R. O. Ritchie:Scripta Metall., 1986, vol. 20, pp. 1459–64.

    Article  CAS  Google Scholar 

  16. R. J. Rioja and E. A. Ludwiczak: in Ref. 3, pp. 471–82.

  17. M. H. Tosten, A. K. Vasudévan, and P. R. Howell: in Ref. 3, pp. 483–89.

  18. R. J. Rioja, P. E. Bretz, R. R. Sawtell, W. H. Hunt, and E. A. Ludwiczak: inAluminum Alloys: Their Physical and Mechanical Properties, E. A. Starke and T. H. Sanders, eds., EMAS Ltd., Warley, U.K., 1986.

    Google Scholar 

  19. R. O. Ritchie, R. H. Dauskardt, and R. M. Cannon: “Crack Tip Shielding in Fracture and Fatigue: Extrinsic vs. Intrinsic Toughening”, Lawrence Berkeley Laboratory Report No. LBL-20656, University of California, Berkeley, CA, 1986.

  20. R. O. Ritchie and W. Yu: inSmall Fatigue Cracks, R. O. Ritchie and J. Lankford, eds., TMS-AIME, Warrendale, PA, 1986, pp. 167–89.

    Google Scholar 

  21. A. G. Evans and K. T. Faber:J. Amer. Cer. Soc., 1984, vol. 67, pp. 255–60.

    Article  Google Scholar 

  22. S. Suresh and R. O. Ritchie: inFatigue Crack Growth Threshold Concepts, D.L. Davidson and S. Suresh, eds., TMS-AIME, Warrendale, PA, 1984, pp.227–61.

    Google Scholar 

  23. K. T. Venkateswara Rao, W. Yu, and R. O. Ritchie:Metall. Trans. A, 1988, vol. 19A, pp. 563–69.

    CAS  Google Scholar 

  24. E. Zaiken and R.O. Ritchie:Mater. Sci. Eng., 1985, vol. 70, pp. 151–60.

    Article  CAS  Google Scholar 

  25. R.O. Ritchie:Intl. Metals Reviews, 1979, vol. 20, pp. 205–30.

    Google Scholar 

  26. S. Suresh, A. K. Vasudévan, and P. E. Bretz:Metall. Trans. A, 1984, vol. 15A, pp. 369–79.

    CAS  Google Scholar 

  27. R. D. Carter, E. W. Lee, E. A. Sarke, Jr., and C. J. Beevers:Metall. Trans. A, 1984, vol. 15A, pp. 555–63.

    CAS  Google Scholar 

  28. S. Suresh and R.O. Ritchie:Scripta Metall., 1983, vol. 17, pp. 575–80.

    Article  CAS  Google Scholar 

  29. C. F. Shih:J. Mech. Phys. Solids, 1981, vol. 29, pp. 305–30.

    Article  Google Scholar 

  30. R. O. Ritchie, S. Suresh, and C. M. Moss:J. Eng. Matls. Tech., Trans. ASME, Series H, 1980, vol. 102, pp. 293–99.

  31. A. T. Stewart:Eng. Fract. Mech., 1980, vol. 13, pp. 463–78.

    Article  CAS  Google Scholar 

  32. S. Suresh, G. F. Zamiski, and R. O. Ritchie:Metall. Trans. A, 1981, vol. 12A, pp. 1435–43.

    Google Scholar 

  33. S. Suresh:Metall. Trans. A, 1983, vol. 14A, pp. 2375–85.

    Google Scholar 

  34. N. Walker and C. J. Beevers:Fat. Eng. Mat. Struct., 1979, vol. 1, pp. 135–48.

    Article  CAS  Google Scholar 

  35. K. Minakawa and A. J. McEvily:Scripta Metall., 1981, vol. 6, pp. 633–36.

    Google Scholar 

  36. S. Suresh and R. O. Ritchie:Metall. Trans. A, 1982, vol. 13A, pp. 1627–31.

    Google Scholar 

  37. W. Elber:Eng. Fract. Mech., 1970, vol. 2, pp. 37–45.

    Article  Google Scholar 

  38. R. O. Ritchie and S. Suresh:Metall. Trans. A, 1982, vol. 13A, pp. 937–40.

    Google Scholar 

  39. D. B. Marshall, B. N. Cox, and A. G. Evans:Acta Metall., 1985, vol. 11, pp. 2013–21.

    Google Scholar 

  40. S. Suresh and A. K. Vasudévan:Mater. Sci. Eng., 1986, vol. 79, pp. 183–90.

    Article  CAS  Google Scholar 

  41. R. O. Ritchie and J. Lankford:Mater. Sci. Eng., 1986, vol. 84, pp. 11–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

R. O. RITCHIE, Professor and Director, Center for Advanced Materials, Lawrence Berkeley Laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkateswararao, K.T., Yu, W. & Ritchie, R.O. Fatigue crack propagation in aluminum- lithium alloy 2090: Part I. long crack behavior. Metall Trans A 19, 549–561 (1988). https://doi.org/10.1007/BF02649269

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649269

Keywords

Navigation