Skip to main content
Log in

Microstructure development during conventional and isothermal hot forging of a near-gamma titanium aluminide

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The breakdown of the lamellar preform microstructure in the ingot metallurgy near-gamma titanium aluminide, Ti-45.5Al-2Cr-2Nb (atomic percent), was investigated. Microstructures developed during canned, conventional hot forging were compared to those from isothermal hot forging. The higher rate of deformation in conventional forging led to considerably finer and almost completely broken-down structures in the as-forged condition. Several nontraditional approaches, including the isothermal forging of a metastable microstructure (so-called “alpha forging”) and the inclusion of a short static recrystallization anneal during forging, were found to produce a more fully broken-down structure in as-isothermally forged conditions. Despite the noticeable microstructure differences after forging, conventionally and isothermally forged material responded similarly during heat treatment. In both cases, almost totally recrystallized structures of either equiaxed gamma or transformed alpha grains surrounded by fine gamma grains were produced depending on the heat-treatment temperature. Metallography on forged and heat-treated pancake macroslices was useful in delineating small differences in composition not easily detected by analytical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.C. Huang and D.S. Shih: inMicrostructure/Property Relationships in Titanium Aluminides and Alloys, Y.-W. Kim and R.R. Boyer, eds., TMS, Warrendale, PA, 1991, pp. 105–22.

    Google Scholar 

  2. Y.-W. Kim and D.M. Dimiduk:JOM, 191, vol. 43 (8), pp. 40–47.

    Google Scholar 

  3. .L. Wardlaw: Timet Corporation, Henderson, NV, unpublished research, 1989.

  4. S.L. Semiatin, S.I. Oh, R.J. Fiorentio, V. Seetharaman, and J.C. Malas: inHeat Resistant Materials, K. Natesan and D.J. Tillack, eds., ASM INTERNATI0NA1, Materials Park, OH, 1991, pp. 175–86.

    Google Scholar 

  5. V. Seetharaman, J.C. Malas, and C. M. Lombard: inHigh-Temperature Ordered Intermetallic Alloys IV, L.A. Johnson, D.P. Pope, and J.O. Stiegler, eds., Materials Research Society, Pittsburgh, PA, 1991, pp. 889–94.

    Google Scholar 

  6. R.L. Goetz, V.K. Jain, and C. M. Lombard:J. Mater. Proc. Technol., 1992, vol. 35, pp. 37–60.

    Article  Google Scholar 

  7. K. Wurzwallner, H. Clemens, P.S. Schretter, A. Bartels, and C. Koeppe: inHigh-Temperature Ordered Intermetallic Alloys V, I. Baker, R. Darolia, J.D. Whittenberger, and M.H. Yoo, eds., Materials Research Society, Pittsburgh, PA, 1993, pp. 867–72.

    Google Scholar 

  8. K. Wurzwallner, H. Puschnik, H. Clemens, P. Schretter, and G. Korb: Böhler Edelstahl GmbH, Kapfenberg, Austria, unpublished research, 1992.

  9. K. Wurzwallner, P. Schretter, and H. Clemens: inProc. 13th Int. Plansee Seminar, H. Bildstein and R. Eck, eds., Metallwerk Plansee, Reutte, Austria, 1993, pp. 537–51.

    Google Scholar 

  10. C. McCullough, J.J. Valencia, C.G. Levi, and R. Mehrabian:Acta Metall., 1989, vol. 37, pp. 1321–36.

    Article  CAS  Google Scholar 

  11. J.D. Bryant and S.L. Semiatin:Scripta Metall. Mater., 1991, vol. 25, pp. 449–53.

    Article  CAS  Google Scholar 

  12. S.L. Semiatin and P.A. McQuay:Metall. Trans. A, 1992, vol. 23A, pp. 149–61.

    CAS  Google Scholar 

  13. S.L. Semiatin, R. Nekkanti, M.K. Alam, and P.A. McQuay:Metall. Trans. A, 1993, vol. 24A, pp. 1295–1306.

    CAS  Google Scholar 

  14. S.L. Semiatin, P.A. McQuay, W.R. Kerr, M. Stucke, Y.-W. Kim, and S. El-Soudani: inHigh-Temperature Ordered Intermetallic Alloys IV, L.A. Johnson, D.P. Pope, and J.O. Stiegler, eds., Materials Research Society, Pittsburgh, PA, 1991, pp. 883–88.

    Google Scholar 

  15. S.V. Radcliffe and E.B. Kula: inFundamentals of Deformation Processing, W.A. Backofen, J.J. Burke, L.F. Coffin, Jr., N.L. Reed, and V. Weiss, eds., Syracuse University Press, Syracuse, NY, 1964, pp. 321–63.

    Google Scholar 

  16. V.K. Jain, R.L. Goetz, and S.L. Semiatin: Air Force Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, OH, unpublished research, 1993.

  17. S.L. Semiatin, V. Seetharaman, V. Jain, and R.L. Goetz: Air Force Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, OH, Air Force Invention No 20, 661, 1992.

    Google Scholar 

  18. S.L. Semiatin, M. Ohls, and W.R. Kerr:Scripta Metall. et Materialia, 1991, vol. 25, pp. 1851–56.

    Article  CAS  Google Scholar 

  19. S.L. Semiatin, J.C. Soper, and R. Shivpuri:Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1681–92.

    CAS  Google Scholar 

  20. H.S. Carslaw and J.C. Jaeger:Conduction of Heat in Solids, Oxford University Press, London, 1959, ch. 18.

    Google Scholar 

  21. R.L. Goetz and S.L. Semiatin: Air Force Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, OH, unpublished research, 1994.

    Google Scholar 

  22. S.L. Semiatin and J.H. Holbrook:Metall. Trans. A, 1983, vol. 14A, pp. 1681–95.

    Google Scholar 

  23. R. Srinivasan and I. Weiss: Wright State University, Dayton, OH, unpublished research, 1993.

  24. Y.S. Touloukian:Thermophysical Properties of High Temperature Solid Materials, MaC.Millan Company, New York, NY, 1967.

    Google Scholar 

  25. Metals Handbook, 8th ed., T. Lyman, ed., ASM, Metals Park, OH, 1961, vol. 1, pp. 52–55.

    Google Scholar 

  26. P.R. Burte, S.L. Semiatin, and T. Altan: Report No. ERC/NSM-B-89-20, Engineering Research Center for Net Shape Manufacturing, The Ohio State University, Columbus, OH, 1989.

    Google Scholar 

  27. P.R. Burte, S.L. Semiatin, and T. Altan:Proc. NAMRC XVIII, Soc. Manuf. Eng., Dearborn, MI, 1990, pp. 59–66.

    Google Scholar 

  28. H.J. Frost and M.F. Ashby:Deformation-Mechanism Maps, Pergamon Press, Oxford, 1982, ch. 2.

    Google Scholar 

  29. P.G. Shewmon:Transformations in Metals, McGraw-Hill, New York, NY, 1969, ch. 3.

    Google Scholar 

  30. P. Hellman and M. Hillert:Scand. J. Metall., 1975, vol. 4, p. 211.

    CAS  Google Scholar 

  31. P.M. Hazzledine and R.D.J. Oldershaw:Phil. Mag., 1990, vol. A61, p. 579.

    Google Scholar 

  32. D.S. Shih and G.K. Scarr: inHigh-Temperature Ordered Intermetallic Alloys IV, L.A. Johnson, D.P. Pope, and J.O. Stiegler, eds., Material Research Society, Pittsburgh, PA, 1991, pp. 727–32.

    Google Scholar 

  33. S.L. Semiatin and V. Seetharaman: Air Force Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, OH, unpublished research, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semiatin, S.L., Seetharaman, V. & Jain, V.K. Microstructure development during conventional and isothermal hot forging of a near-gamma titanium aluminide. Metall Mater Trans A 25, 2753–2768 (1994). https://doi.org/10.1007/BF02649227

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649227

Keywords

Navigation