Skip to main content
Log in

Regularity of refinable function vectors

  • Articles
  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We study the existence and regularity of compactly supported solutions φ = (φv) /r−1v=0 of vector refinement equations. The space spanned by the translates of φv can only provide approximation order if the refinement maskP has certain particular factorization properties. We show, how the factorization ofP can lead to decay of |̸v(u)| as |u| → ∞. The results on decay are used to prove uniqueness of solutions and convergence of the cascade algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpert, B. K. (1993). A class of bases inL 2 for the sparse representation of integral operators.SIAM J. Math. Anal. 24, 246–262.

    Article  MATH  MathSciNet  Google Scholar 

  2. Alpert, B. K. and Rokhlin, V. A. (1991). A fast algorithm for the evaluation of Legendre expansions.SIAM J. Sci. Stat. Comput. 12, 158–179.

    Article  MATH  MathSciNet  Google Scholar 

  3. de Boor, C. (1976). Splines as linear combinations of B-splines. A survey.Approximation Theory II (G. G. Lorentz, C. K. Chui, and L. L. Schumaker, eds.). Academic Press, New York, 1–47.

    Google Scholar 

  4. Cavaretta, A., Dahmen, W., and Micchelli, C. A. (1991).Stationary subdivision.Mem. Amer. Math. Soc. 453, Amer. Math. Soc., Providence, RI, 1–186.

    Google Scholar 

  5. Cohen, A. and Conze, J. P. (1992). Régularité des d’ondelettes et mesures ergodiques.Rev. Math. Iberoamericana 8, 351–366.

    MATH  MathSciNet  Google Scholar 

  6. Cohen, A. and Daubechies, I. (1996). A new technique to estimate the regularity of refinable functions,Rev. Math. Iberoamericana (submitted).

  7. Conze, J. P. and Raugi, A. (1990). Fonction harmonique pour un opérateur de transition et application.Bull. Soc. Math. France 118, 273–310.

    MATH  MathSciNet  Google Scholar 

  8. Daubechies, I. (1988). Orthonormal bases of wavelets with compact support.Comm. Pure Appl. Math. 41, 909–996.

    Article  MATH  MathSciNet  Google Scholar 

  9. —————. (1992).Ten Lectures on Wavelets. SIAM, Philadelphia, PA.

    MATH  Google Scholar 

  10. Donovan, G., Geronimo, J. S., Hardin, D. P., and Massopust, P. R. (1994). Construction of orthogonal wavelets using fractal interpolation functions. Preprint.

  11. Dyn, N. (1992). Subdivision schemes in computer-aided geometric design.Advances in Numerical Analysis II, Wavelets, Subdivision Algorithms and Radial Functions (W. A. Light, ed.). Oxford University Press, New York, 36–104.

    Google Scholar 

  12. Eirola, T. (1992). Sobolev characterization of solutions of dilation equations.SIAM J. Math. Anal. 23, 1015–1030.

    Article  MATH  MathSciNet  Google Scholar 

  13. Goodman, T. N. T. and Lee, S. L. (1994). Wavelets of multiplicityr.Trans. Amer. Math. Soc. 342, 307–324.

    Article  MATH  MathSciNet  Google Scholar 

  14. Goodman, T. N. T., Lee, S. L., and Tang, W. S. (1993). Wavelets in wandering subspaces.Trans. Amer. Math. Soc. 338, 639–654.

    Article  MATH  MathSciNet  Google Scholar 

  15. Griepenberg, G. (1993). Unconditional bases of wavelets for Sobolev spaces.SIAM J. Math. Anal. 24, 1030–1042.

    Article  MathSciNet  Google Scholar 

  16. Heil, C. and Colella, D. (1996). Matrix refinement equations: Existence and uniqueness. Preprint.

  17. Heil, C., Strang, G., and Strela, V. (1996). Approximation by translates of refinable functions.Numer. Math. (to appear).

  18. Heller, P., Strela, V., Strang, G., Topiwala, P., Heil, C., and Hills, L. (1995). Multiwavelet filter banks for data compression.Proc. IEEE ISCAS, Seattle, WA.

  19. Hervé, L. (1994). Multi-Resolution analysis of multiplicityd. Application to dyadic interpolation.Appl. Comput. Harmonic Anal. 1, 299–315.

    Article  MATH  Google Scholar 

  20. —————. (1995). Construction et régularité des fonctions d’échelle,SIAM J. Math. Anal. 26(5), 1361–1385.

    Article  MATH  MathSciNet  Google Scholar 

  21. Lancaster, P. and Tismenetsky, M. (1985).The Theory of Matrices. Academic Press, San Diego, CA.

    MATH  Google Scholar 

  22. Micchelli, C. A. and Pinkus, A. (1991). Descartes systems from corner cutting.Const. Approx. 7, 161–194.

    Article  MATH  MathSciNet  Google Scholar 

  23. Plonka, G. (1995). Approximation order provided by refinable function vectors.Constr. Approx., to appear.

  24. —————. (1995). Factorization of refinement masks for function vectors. inWavelets and Multilevel Approximation (C. K. Chui and L. L. Schumaker, eds.), Singapore, World Scientific Publ. Co., 317–324.

    Google Scholar 

  25. Strang, G. and Strela, V. (1994). Orthogonal multiwavelets with vanishing moments.J. Opt. Engrg. 33, 2104–2107.

    Article  Google Scholar 

  26. —————. (1995). Short wavelets and matrix dilation equations.IEEE Trans. Signal Proc. 43, 108–115.

    Article  Google Scholar 

  27. Vetterli, M. and Strang, G. (1994). Time-varying filter banks and multiwavelets. Electrical Engineering Department, Berkeley, preprint.

  28. Villemoes, L. (1994). Wavelet analysis of refinement equations.SIAM J. Math. Anal. 25, 1433–1460.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, A., Daubechies, I. & Plonka, G. Regularity of refinable function vectors. The Journal of Fourier Analysis and Applications 3, 295–324 (1997). https://doi.org/10.1007/BF02649113

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649113

Math Subject Classifications

Keywords and Phrases

Navigation