Skip to main content
Log in

A direct approach to the mellin transform

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

The aim of this paper is to present an approach to the Mellin transform that is fully independent of Laplace or Fourier transform theory, in a systematic, unified form, containing the basic properties and major results under natural, minimal hypotheses upon the functions in questions. Cornerstones of the approach are two definitions of the transform, a local and global Mellin transform, the Mellin translation and convolution structure, in particular approximation-theoretical methods connected with the Mellin convolution singular integral enabling one to establish the Mellin inversion theory. Of special interest are the Mellin operators of differentiation and integration, more correctly of anti-differentiation, enabling one to establish the fundamental theorem of the differential and integral calculus in the Mellin frame. These two operators are different than those considered thus far and more general. They are of particular importance in solving differential and integral equations. As applications, the wave equation on + × ℝ+ and the heat equation in a semi-infinite rod are considered in detail. The paper is written in part from an historical, survey-type perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apostol, T.M. (1976).Introduction to Analytic Number Theory, Springer, New York.

    MATH  Google Scholar 

  2. Apostol, T.M. (1992).Modular Functions and Dirichlet Series in Number Theory, Springer, New York.

    Google Scholar 

  3. Bertrand, J., Bertrand, P., and Ovarlez J.P. (1996). The Mellin Transform,The Transforms and Applications. Handbook (A.D. Poularkas, ed.). CRC Press, Boca Raton, FL, 829–885.

    Google Scholar 

  4. Bohr, H. and Cramér, H. (1923–1927) Die neuere Entwicklung der analytischen Zahlentheorie,Enzyklopädie der Mathematischen Wissenschaften, Band II, 3. Teil, 2, Hälfte, 722–849.

    Google Scholar 

  5. Bryckhov, Yu.A., Glaeske, H.J., Prudnikov, A.P., and Vu Kim Tuan. (1992). Multidimensional Integral Transformations, Gordon and Breach, Philadelphia.

    Google Scholar 

  6. Butzer, P.L. (1987). Dirichlet and his role in the founding of mathematical physics.Arch. Internat. Hist. Sci 37, 49–82.

    MATH  Google Scholar 

  7. Butzer, P.L. and Berens, H. (1967). Semi-groups of Operators and Approximation,Grundlehren Math. Wiss. 145, Springer, Berlin.

    MATH  Google Scholar 

  8. Butzer, P.L. and Engels, W. (1989). Background to an extension of Gibbs differentation in Walsh analysis.Theory and Applications of Gibbs Derivatives, (P.L. Butzer and R.S. Stanković, eds.). Proc. 1st Internat. Workshop on Gibbs Derivatives, Kupari-Dubrovnik, Yugoslavia, Math. Inst., Beograd, 19–57.

    Google Scholar 

  9. Butzer, P.L. and Gessinger, A. (1995). Ergodic theorems for semigroups and cosine operator functions at zero and infinity with rates; applications to partial differential equations.Mathematical Analysis, Wavelets, and Signal Processing, (M.E.H. Ismail et al., eds.). Proc. Internat. Conf., Cairo,Contemp. Math. 190,Am. Math. Soc., Providence, 67–94.

    Google Scholar 

  10. Butzer, P.L. and Hauss, M. (1991). Stirling functions of first and second kind; some new applications.Approximation, Interpolation and Summability (Proc. Conf. in honor of Prof. Jakimovski, Research Inst. of Math. Science, Bar Ilan University, Tel Aviv), Weizmann Press, Israel, 4, 89–108.

    Google Scholar 

  11. Butzer, P.L., Hauss, M., and Stens, R.L. (1991). The sampling theorem and its unique role in various branches of mathematics.Mitt. Math. Ges. Hamburg,12, 523–547.

    MATH  Google Scholar 

  12. Butzer, P.L. and Jansche, S. (1997). The discrete Mellin transform, Mellin-Fourier series, and the Poisson summation formula.Functional Analysis and Approximation Theory (F. Altomare et al., eds.).Proc. 3rd. Int. Conf., Maratea,Rend. Circ. Mat. Palermo (2), to appear.

  13. Butzer, P.L. and Jansche, S. (1997). The exponential sampling theorem of signal analysis,Atti Sem. Mat. Fis. Univ. Modena (C. Bardaro et al, eds.).Proc. Conferenze in onore di Calogero Vinti, Perugia. To appear.

  14. Butzer, P.L, Jansche, S., and Stens, R.L. (1992). Functional analytic methods in the solution of the fundamental theorems on best algebraic approximation,Approximation Theory, (G.A. Anastassiou, ed.). Proc. 6th Southeastern Approximation Theorists Annual Conf., Memphis. Lecture Notes inPure Appl. Math. 138, 151–205, Dekker, New York.

    Google Scholar 

  15. Butzer, P.L. and Nessel, R.J. (1971). Fourier Analysis and Approximation.Lehrbücher und Monographien aus dem Gebiete der exakten Wissenschaften, Mathematische Reihe 40. Birkhäuser, Basel, Academic Press, New York.

    Google Scholar 

  16. Butzer, P.L., Schmidt, M., and Stark, E.L. (1988). Observations on the history of central B-splines.Arch. Hist. Exact Sci. 39, 137–156.

    MATH  Google Scholar 

  17. Butzer, P.L., Splettstösser, W., and Stens, R.L. (1988). The sampling theorem and linear prediction in signal analysis.Jahresber. Deutsch. Math.-Verein. 90, 1–70.

    MATH  Google Scholar 

  18. Butzer, P.L. and Stark, E.L. (1986). Riemann’s example of a continuous nondifferentiable function in the light of two letters (1865) of Christoffel to Prym.Bull. Soc. Math. Belg. Sér. A 38, 45–73.

    MATH  Google Scholar 

  19. Butzer, P.L. and Stens, R.L. (1977). The operational properties of the Chebyshev transform. I: General properties.Funct. Approx. Comment. Math. 5, 129–160.

    MATH  Google Scholar 

  20. Butzer, P.L. and Wagner, H.J. (1972). Approximation by Walsh polynomials and the concept of a derivative.Applications of Walsh Functions, (R.W. Zeek and A.E. Showalter, eds.).Proc. Symp., Catholic University of America, Washington, D.C., 388–392.

    Google Scholar 

  21. Butzer, P.L. and Westphal, U. (1975). An access to fractional differentiation via fractional difference quotients,Fractional Calculus and its Applications, (B. Ross, ed.).Proc. Conf., New Haven, Lecture Notes inMath. 457, 116–145, Springer, Heidelberg.

    Chapter  Google Scholar 

  22. Cahen, E. (1894). Sur la fonctionζ(s) de Riemann et sur des fonctions analogues.Ann. Sci. École Norm. Sup. (3) 11, 75–164.

    Google Scholar 

  23. Clausen, T. (1858). Beweis des von Herrn Schlömilch aufgestellten Lehrsatzes.Ark. Mat. Phys. 30, 166–170.

    Google Scholar 

  24. Colombo, S. (1959). Les transformations de Mellin et de Hankel, Centre National de la Recherche Scientifique, Paris.

    MATH  Google Scholar 

  25. Colombo, S. and Lavoine, J. (1959). Transformations de Laplace et de Mellin, Formulaires, Mode d’utilisation,Memorial Sci. Math. 169, Centre National de la Recherche Scientifique, Paris.

    Google Scholar 

  26. Comtet, L. (1974).Advanced Combinatorics. Reidel Publishing, Dordrecht.

    MATH  Google Scholar 

  27. Davies, B. (1984).Integral Transforms and their Applications. Springer, New York.

    Google Scholar 

  28. Doetsch, G. (1937).Theorie und Anwendungen der Laplace-Transformation. Springer, Berlin. (Reprint, Dover, New York, 1943).

    Google Scholar 

  29. Doetsch, G. (1950).Handbuch der Laplace-Transformation. vol. 1, Birkhäuser, Basel.

    Google Scholar 

  30. Edwards, H.M. (1974). Riemann’s Zeta Function.Pure Appl. Math., Academic Press, New York.

    Google Scholar 

  31. Elfving, G. (1981).The History of Mathematics in Finland 1828–1918. Frenckell, Helsinki.

    MATH  Google Scholar 

  32. Erhardt, B.A. (1994).Die kontinuierliche und diskrete Mellin-Transformation mit Anwendungen in der Zahlen- und Signaltheorie. Diplomarbeit, RWTH Aachen, Aachen.

    Google Scholar 

  33. Euler, L. (1761). Remarques sur un beau rapport entre les séries des puissances taut directes que rèciproques.Mem. Acad. Sci. Berlin,17, 83–106. (=Opera (1), 15, 70–90).

    Google Scholar 

  34. Hadamard, J. (1896). Sur la distribution des zéros de la fonctionζ(s) et ses conséquences arithmetiques.Bull. Soc. Math. France 24, 199–220.

    Google Scholar 

  35. Hamburger, H. (1922). Über einige Beziehungen, die mit der Funktionalgleichung der Riemannschenζ-Funktion equivalent sind.Math. Ann. 85, 129–140.

    Article  Google Scholar 

  36. Hardy, G.H. and Littlewood, J.E. (1915). New proofs of the prime-number theorem and similar theorems.Quart. J. Math. Oxford 46, 215–219.

    Google Scholar 

  37. Hardy, G.H. and Littlewood, J.E. (1918). Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes.Acta Math. 41, 119–196.

    Article  Google Scholar 

  38. Hauss, M. (1995). Verallgemeinerte Stirling, Bernoulli und Euler Zahlen, deren Anwendungen und schnell konvergente Reihen für Zeta Funktionen. Dissertation, RWTH Aachen, Aachen.

    MATH  Google Scholar 

  39. Hewitt, E. and Stromberg, K. (1965). Real and Abstract Analysis. Graduate Texts in Math. 25, Springer, New York.

    MATH  Google Scholar 

  40. Ivić, A. (1985).The Riemann Zeta-Function. Wiley-Interscience, New York.

    Google Scholar 

  41. Jansche, S. (1991). Beste Approximation in linearen normierten Räumen mit Anwendungen auf die Approximation durch Algebraische Polynome. Diplomarbeit, RWTH Aachen, Aachen.

    Google Scholar 

  42. Jordan, C. (1965).Calculus of Finite Differences. Chelsea Publishing, New York.

    MATH  Google Scholar 

  43. Kloosterman, H.D. (1922). Een integraal voor deζ-functie van Riemann.Christian Huygens Math. Tijdschrift 2, 172–177.

    Google Scholar 

  44. Kolbe, W. and Nessel, R.J. (1972). Saturation theory in connection with Mellin transform methods,SIAM J. Math. Anal. 3, 246–262.

    Article  MATH  Google Scholar 

  45. Landau, E. (1906/07). Euler und die Funktionalgleichung der Riemannschen Zetafunktion.Bibl. Math. (3)7, 69–79.

    Google Scholar 

  46. Lindelöf, E. (1933). Robert Hjalmar Mellin,Acta Math. 61, I-VI.

    Article  Google Scholar 

  47. Magnus, W., Oberhettinger, F., and Soni, R.P. (1966). Formulas and Theorems for the Special Functions of Mathematical Physics. Grundlehren Math. Wiss. 52, Springer, Berlin.

    MATH  Google Scholar 

  48. Malmstén, C.J. (1849). De integralibus quibusdam definitis, seriebusque infinitis.J. Reine Angew. Math. 38, 1–39.

    Google Scholar 

  49. Mellin, Hj. (1895). Über die fundamentale Wichtigkeit des Satzes von Cauchy für die Theorien der Gamma- und hypergeometrischen Functionen.Acta Soc. Sci. Fennicae. 20, 1–115.

    Google Scholar 

  50. Mellin, Hj. (1898). Über eine Verallgemeinerung der Riemannschen Funktionζ(s).Acta Soc. Sci. Fennicae. 24, 1–50.

    Google Scholar 

  51. Mellin, Hj. (1901). Eine Formel für den Logarithmus transcendenter Functionen von endlichem Geschlecht.Acta Math. 25, 165–183.

    Article  Google Scholar 

  52. Mellin, Hj. (1901). Über den Zusammenhang zwischen den linearen Differential- und Differenzengleichungen.Acta Math. 25, 139–164.

    Article  Google Scholar 

  53. Mellin, Hj. (1902). Die Dirichletschen Rheien, die zahlentheoretischen Funktionen und die unendlichen Produkte vom endlichen Geschlecht.Acta Soc. Sci. Fennicae. 31, 1–48.

    Google Scholar 

  54. Mellin, Hj. (1903). Die Dirichlet’schen Reihen, die zahlentheoretischen Funktionen und die unendlichen Produkte von endlichem Geschlecht,Acta Math. 28, 37–64.

    Article  Google Scholar 

  55. Mellin, Hj. (1910). Abriß einer einheitlichen Theorie der Gamma-und der hypergeometrischen Funktionen.Math. Ann. 68, 305–337.

    Article  Google Scholar 

  56. Mellin, Hj. (1917). Bemerkungen in Anschluß an den Beweis eines Satzes von Hardy über die Zetafunktion.Ann. Acad. Sci. Fenn. Ser. A I Math. 11.

  57. Oberhettinger F. (1974).Tables of Mellin Transforms. Springer, Berlin.

    MATH  Google Scholar 

  58. Patterson, S.J. (1988). An Introduction to the Theory of the Riemann-Zeta-Function.Cambridge Studies Advanced Math. 14, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  59. Perron, O. (1908). Zur Theorie der Dirichletschen Reihen.J. Reine Angew. Math. 134, 95–143.

    Google Scholar 

  60. Pincherle, S. (1888). Sulle funzioni ipergeometriche generallizate,Rend. Accad. Naz. Lincei 4, 792–799.

    Google Scholar 

  61. Platonov, M.L. (1964). On the numbers of a combinatorial structure,Sibirsk. Mat. Zh. 5, 1317–1325. (Russian).

    MATH  Google Scholar 

  62. Prössdorf, S. and Silbermann, B. (1991).Numerical Analysis for Integral and Related Operator Equations. Akademie Verlag, Berlin.

    Google Scholar 

  63. Rademacher, H. (1973).Topics in Analytic Number Theory. Grundlehren Math. Wiss. 169, Springer, Berlin.

    MATH  Google Scholar 

  64. Riemann, B. (1990). Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, Gesammelte Mathematische Werke, Wissenschaftlicher Nachlaß und Nachträge,Collected Papers (nach der Ausgabe von H. Weber und R. Dedekind, neu herausgegeben von R. Narasimhan, ed.). Springer, Berlin, Teubner, Leipzig, 177–185.

    Google Scholar 

  65. Samko, S.G., Kilbas, A.A., and Marichev, O.I. (1993).Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Amsterdam.

    MATH  Google Scholar 

  66. Sasiela, R.J. (1994).Electromagnetic Wave Propagation in Turbulence: Evaluation and Application of Mellin Transforms. Springer, Berlin.

    MATH  Google Scholar 

  67. Schlömilch, O., (1849). Lehrsatz.Ark. Math. Phys. 12, 415.

    Google Scholar 

  68. Schlömilch, O. (1858). Ueber eine Eigenschaft gewisser Reihen.Zeit. fuer Math. und Phys. 3, 130–132.

    Google Scholar 

  69. Sneddon, I.N. (1955).Functional Analysis, Encyclopedia of Physics, Mathematical Methods. (S. Flügge, ed.). Vol. II. Springer, Berlin, 198–348.

    Google Scholar 

  70. Sneddon, I.N. (1972).The Use of Integral Transforms. McGraw-Hill, New York.

    MATH  Google Scholar 

  71. Stens, R.L. and Wehrens, M. (1979). Legendre transform methods and best algebraic approximation.Comment. Math. Prace Mat. 21, 351–380.

    MATH  Google Scholar 

  72. Szmydt, Z. and Ziemian, B. (1992).The Mellin Transformation and Fuchsian Type Purtial Differential Equations. Kluwer, Dordrecht.

    Google Scholar 

  73. Titchmarsh, E.C. (1948).Introduction to the Theory of Fourier Integrals. Oxford University Press, Oxford.

    Google Scholar 

  74. Titchmarsh, E.C. (1986).The Theory of the Riemann Zeta-function. Clarendon Press, Oxford.

    MATH  Google Scholar 

  75. Uflyand, Y.A. (1963).Integral Transforms in Problems of the Theory of Elasticity. Izdat, Akad. Nauk SSSR (in Russian).

  76. de la Vallée Poussin, C. (1896). Recherches analytiques sur la théorie des nombres premiers.Ann. Soc. Sci. Bruxelles.20, 183–256, 281–297.

    Google Scholar 

  77. Weber, H. (1900).Die partiellen Differentialgleichungen der mathematischen Physik, nach Riemann’s Vorlesungen. Vieweg, Braunschweig.

    MATH  Google Scholar 

  78. Weil, A. (1975). (ed.). Essais historiques sur la théorie des nombres.Monographie No. 22 de l’Enseignement Mathématique, Genève.

  79. Widder, D.V (1946).The Laplace Transform. University of Princeton Press, Princeton, NJ.

    MATH  Google Scholar 

  80. Widder, D.V. (1971). (ed.). An Introduction to Transform Theory.Pure Appl. Math. 42, Academic Press, New York.

    Google Scholar 

  81. Zemanian, A.H., (1968).Generalized Integral Transformation. Interscience, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butzer, P.L., Jansche, S. A direct approach to the mellin transform. The Journal of Fourier Analysis and Applications 3, 325–376 (1997). https://doi.org/10.1007/BF02649101

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649101

Math Subject Classification

Keywords and Phrases

Navigation