Skip to main content
Log in

Kinetics of the solid-state carbothermic reduction of wessel manganese ores

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Reduction of manganese ores from the Wessel mine of South Africa has been investigated in the temperature range 1100 °C to 1350 °C with pure graphite as the reductant under argon atmosphere. The rate and degree of reduction were found to increase with increasing temperature and decreasing particle sizes of both the ore and the graphite. The reduction was found to occur in two stages: (1) The first stage includes the rapid reduction of higher oxides of manganese and iron to MnO and FeO. The rate control appears to be mixed, both inward diffusion of CO and outward diffusion of CO2 across the porous product layer, and the reaction of carbon monoxide on the pore walls of the oxide phase play important roles. The values of effective CO-CO2 diffusivities generated by the mathematical model are in the range from 2.15 x 10−5 to 6.17 X 10−5 cm2.s−1 for different ores at 1300 °C. Apparent activation energies range from 81. 3 to 94.6 kJ/kg/mol. (2) The second stage is slower during which MnO and FeO are reduced to mixed carbide of iron and manganese. The chemical reaction between the manganous oxide and carbon dissolved in the metal phase or metal carbide seems to be the rate-controlling process The rate constant of chemical reaction between MnO and carbide on the surface of the impervious core was found to lie in the range from 1.53 x 10−8 to 1.32 x 10−7 mol . s−1 . cm−2. Apparent activation energies calculated are in the range from 102.1 to 141.7 kJ/kg/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.R. Morral:CIM Bull., 1984, vol. 77 (86), pp. 72–75.

    Google Scholar 

  2. A.S.E. Kelyenstuber:Proc. 12th CMMI Congress, S. Afr. Inst. Min. Metall., Johannesburg, 1980, pp. 213–20.

  3. V.N. Misra and P.R. Khangaoukar:J. Inst. Eng. (India), 1975, vol. 55MM (283), pp. 59–63.

    Google Scholar 

  4. W. Hofmann, T. Vlajcic, and G. Rath:Proc. Infacon 89, New Orleans, LA, The Ferroalloys Association of the United States, Arlington, VA, 1989, vol. 1, pp. 185–95.

    Google Scholar 

  5. R.H. Tien and E.T. Turkdogan:Metall. Trans. B, 1977, vol. 8B, pp. 305–13.

    CAS  Google Scholar 

  6. Y.K. Rao:Metall. Trans., 1971, vol. 2, pp. 1439–47.

    CAS  Google Scholar 

  7. Y. Mam, Y. Kuramasu, U. Awakura, and Y. Kondo:Metall. Trans. B, 1973, vol. 4B, pp. 2591–98.

    Google Scholar 

  8. N.S.S. Murti and V. Seshadri:Trans. Iron Steel Inst. Jpn., 1982, vol. 22, pp. 925–33.

    Google Scholar 

  9. A.K. Biswas:Principles of Blast Furnace Iron Making Theory and Practice, Cootha Publishing House, Brisbane, Australia, 1981.

    Google Scholar 

  10. E.T. Turkdogan, V. Koump, J.V. Vinters, and J.F. Perzak:Carbon, 1968, vol. 6, pp. 467–84.

    Article  CAS  Google Scholar 

  11. E.A. Gulbransen, K.F. Andrew, and F.A. Brassort:Carbon, 1965, vol. 2, p. 421.

    Article  CAS  Google Scholar 

  12. E.T. Turkdogan and J.V. Vinters:Carbon, 1970, vol. 8, pp. 39–53.

    Article  CAS  Google Scholar 

  13. E.T. Turkdogan and J.V. Vinters:Metall. Trans., 1972, vol. 3, pp. 1561–74.

    Article  CAS  Google Scholar 

  14. G. Heynert and J. Willems:Stahl, u. Eisen, 1959, vol. 79, pp. 1545–54.

    Google Scholar 

  15. S. Ergun:Phys. Chem., 1966, vol. 60, p. 480.

    Google Scholar 

  16. M. Rossberg:Z. Elektrochem., 1956, vol. 60, p. 952.

    CAS  Google Scholar 

  17. P.L. Walker, Jr., F. Rusinko, Jr., and L.G. Austin:Advances in Catalysis, Academic Press, New York, NY, 1959, vol. 11, pp. 133–321.

    Google Scholar 

  18. A.F. Armington: Ph.D. Thesis, Pennsylvania State University, University Park, PA, 1960.

    Google Scholar 

  19. G.J.W. Kor:Metall. Trans. B, 1978, vol. 9B, pp. 307–11.

    CAS  Google Scholar 

  20. B.E. Hunt, S. Mori, S. Katz, and R.E. Beck:Ind. Eng. Chem., 1953, vol. 45, pp. 677–80.

    Article  CAS  Google Scholar 

  21. A. Pahme and H.J. Junker:Brennst. Chem., 1955, vol. 36, pp. 193–99.

    Google Scholar 

  22. K. Hedden:Brennst. Chem., 1960, vol. 41, pp. 193–99.

    CAS  Google Scholar 

  23. K. Tereyama and M. Ikeda:Trans. Jpn. Inst. Met., 1985, vol. 26 (2), pp. 108–14.

    Google Scholar 

  24. W.J. Rankin and J.S.J. Van Deventer:J.S. Afr. Inst. Min. Metall., 1980, vol. 80 (7), pp. 239–47.

    CAS  Google Scholar 

  25. A. Koursaris, A.S.E. Kleyenstuber, and C.W.P. Finn:Spec. Publ. Geol. Soc. S. Afr., 1983, vol. 7, pp. 375–82.

    Google Scholar 

  26. K. Dewar and J.B. See: Report No. 1968, National Institute for Metallurgy, Randburg, South Africa, 1978.

  27. V.K. Antonov and G.I. Chyfarov:Akad. Nauk. USSR Uralskii filial, Tr. Inst. Metall., 1961, vol. 7, pp. 101–05.

    Google Scholar 

  28. L.M. Tsylev:The Smelting of Ferroalloys in the Blast Furnace Using Oxygen Enriched Blast (Polish), Translated by CM. Burnell, Pergamon Press, Oxford, 1963, vol. 1.

    Google Scholar 

  29. H. Van Hien and D.I. Ryzhonkov:Steel USSR, 1972, vol. 2, pp. 178–80.

    Google Scholar 

  30. A.K. Ashin and S.T. Rostovchev:Izv. Vyssh. Zaved., Chem. Met., 1964, vol. 7, pp. 10–18.

    CAS  Google Scholar 

  31. W.D. Grimsely: Master’s Thesis, University of the Witwatersrand, Johannesburg, 1977.

    Google Scholar 

  32. V.N. Misra:Proc. 14th CMMI Congress, Edinburgh, 1990, pp. 39–47.

  33. R.H. Eric and E. Burucu:Miner. Eng., 1992, vol. 5 (7), pp. 795–815.

    Article  CAS  Google Scholar 

  34. J.H. Downing:Elect. Furnace Proc, 1963, vol. 21, pp. 288–96.

    CAS  Google Scholar 

  35. L.N. Barmin:Fiz. Khim. Osn. Proizvod. Stall., 1968, pp. 406–11.

  36. E.T. Turkdogan and J.V. Vinters:Metall. Trans., 1971, vol. 2, pp. 3175–88.

    CAS  Google Scholar 

  37. M. Ishida and C.Y. Wen:AIChE J., 1968, vol. 14 (2), pp. 311–17.

    Article  CAS  Google Scholar 

  38. O. Levenspiel:Chemical Reaction Engineering, Wiley, New York, NY, 1962, pp. 338–57.

    Google Scholar 

  39. T.S. Yun:Trans. Am. Soc. Met., 1961, vol. 54, pp. 129–42.

    CAS  Google Scholar 

  40. J.S.J. Van Deventer and P.R. Visser:Thermochim. Acta, 1987, vol. 111, pp. 89–102.

    Article  Google Scholar 

  41. E.W. Thiele:Ind. Eng. Chem., 1939, vol. 31, pp. 916–20.

    Article  CAS  Google Scholar 

  42. C.N. Satterfield and T.K. Sherwood:The Role of Diffusion in Catalysis, Addison-Wesley, New York, NY, 1963, pp. 5–16.

    Google Scholar 

  43. R.P. King and C.P. Brown:Metall. Trans. B, 1980, vol. 11B, pp. 585–92.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Doctoral Student, Department of Metallurgy and Materials Engineering, University of the Witwatersrand, Johannesburg,

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akdogan, G., Eric, R.H. Kinetics of the solid-state carbothermic reduction of wessel manganese ores. Metall Mater Trans B 26, 13–24 (1995). https://doi.org/10.1007/BF02648973

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648973

Keywords

Navigation