Metallurgical and Materials Transactions A

, Volume 27, Issue 3, pp 671–686 | Cite as

Interface attachment kinetics in alloy solidification

  • Michael J. Aziz
Article

Abstract

The current status of our understanding of nonequilibrium interface kinetics during solidification is reviewed. Measurements of solute trapping and kinetic interfacial undercooling during rapid alloy solidification are accounted for by the continuous growth model (CGM) without solute drag. Disorder trapping has been predicted and observed in the rapid solidification of ordered intermetallic compounds. In systems that undergo either solute or disorder trapping, a transition from short-range diffusion-limited to collision-limited growth occurs, which originates in the reduced driving free energy for the formation of such metastable materials, resulting in three orders of magnitude change in the interface mobility. Applications to cellular and dendritic growth are discussed. A correlation is presented for estimating the diffusive speed—the growth rate necessary for substantial solute trapping—for alloy systems in which it has not, or cannot, be measured. The raw data for Si(Bi) solute trapping measurements to which many models have been compared are presented in the Appendix.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.C. Baker and J.W. Cahn:Acta Metall., 1969, vol. 17, p. 575.CrossRefGoogle Scholar
  2. 2.
    J.C. Baker and J.W. Cahn:Solidification, ASM, Metals Park, OH, 1970, p. 23.Google Scholar
  3. 3.
    P.M. Smith and M.J. Aziz:Acta Metall. Mater., 1994, vol. 42, p. 3515.CrossRefGoogle Scholar
  4. 4.
    R. Reitano, P.M. Smith, and M.J. Aziz:J. Appl. Phys., 1994, vol. 76, p. 1518.CrossRefGoogle Scholar
  5. 5.
    M.O. Thompson, J.W. Mayer, A.G. Cullis, H.C. Webber, N.G. Chew, J.M. Poate, and D.C. Jacobson:Phys. Rev. Lett., 1983, vol. 50, p. 896.CrossRefGoogle Scholar
  6. 6.
    C.A. MacDonald, A.M. Malvezzi, and F. Spaepen:J. Appl. Phys., 1989, vol. 65, p. 129.CrossRefGoogle Scholar
  7. 7.
    S.U. Campisano, G. Foti, P. Baeri, M.G. Grimaldi, and E. Rimini:Appl. Phys. Lett., 1980, vol. 37, p. 719.CrossRefGoogle Scholar
  8. 8.
    J.Y. Tsao, S.T. Picraux, P.S. Peercy, and M.O. Thompson:Appl. Phys. Lett., 1986, vol. 48, p. 278.CrossRefGoogle Scholar
  9. 9.
    H.A. Atwater, J.A. West, P.M. Smith, M.J. Aziz, J.Y. Tsao, P.S. Peercy, and M.O. Thompson:Mater. Res. Soc. Symp. Proc, 1990, vol. 157, p. 369.Google Scholar
  10. 10.
    M.J. Aziz, J.Y. Tsao, M.O. Thompson, P.S. Peercy, and C.W. White:Phys. Rev. Lett., 1986, vol. 56, p. 2489.CrossRefGoogle Scholar
  11. 11.
    M.J. Aziz and T. Kaplan:Acta Metall., 1988, vol. 36, p. 2335.CrossRefGoogle Scholar
  12. 12.
    V.V. Voronkov and A.A. Chernov:Sov. Phys. Crystallogr., 1967, vol. 12, p. 186.Google Scholar
  13. 13.
    A.A. Chernov:Sov. Phys. JETP, 1968, vol. 26, p. 1182.Google Scholar
  14. 14.
    A.A. Chernov:Sov. Phys. Uspekhi, 1970, vol. 13, p. 101.CrossRefGoogle Scholar
  15. 15.
    M.J. Aziz, J.Y. Tsao, M.O. Thompson, P.S. Peercy, C.W. White, and W.H. Christie:Mater. Res. Soc. Symp. Proc., 1985, vol. 35, p. 153.Google Scholar
  16. 16.
    M.J. Aziz and C.W. White:Phys. Rev. Lett, 1986, vol. 57, p. 2675.CrossRefGoogle Scholar
  17. 17.
    L.M. Goldman and M.J. Aziz:J. Mater. Res., 1987, vol. 2, p. 524.Google Scholar
  18. 18.
    D.E. Hoglund, M.J. Aziz, S.R. Stiffler, M.O. Thompson, J.Y. Tsao, and P.S. Peercy:J. Cryst. Growth, 1991, vol. 109, p. 107.CrossRefGoogle Scholar
  19. 19.
    D.P. Brunco, M.O. Thompson, D.E. Hoglund, M.J. Aziz, and H.-J. Gossmann:J. Appl. Phys. 1995, vol. 78, p. 2575.CrossRefGoogle Scholar
  20. 20.
    J.A. Kittl, M.J. Aziz, D.P. Brunco, and M.O. Thompson:J. Cryst. Growth, 1995, vol. 148, p. 172.CrossRefGoogle Scholar
  21. 21.
    S.J. Cook and P. Clancy:J. Chem. Phys., 1993, vol. 99, p. 2175.CrossRefGoogle Scholar
  22. 22.
    Q. Yu, M.O. Thompson, and P. Clancy:Phys. Rev. B, in press (1996).Google Scholar
  23. 23.
    T.F. Ciszek:J. Cryst Growth, 1971, vol. 10, p. 263.CrossRefGoogle Scholar
  24. 24.
    D.M. Zehner, C.W. White, and G.W. Ownby:Surf. Sci., 1980, vol. 92, p. L67.CrossRefGoogle Scholar
  25. 25.
    M. Enomoto and H.I. Aaronson:Scripta Metall., 1989, vol. 23, p. 1983.CrossRefGoogle Scholar
  26. 26.
    W.J. Boettinger: inRapidly Solidified Amorphous and Crystalline Alloys, B.H. Kear and B.C. Giessen, eds., Elsevier/North-Holland, New York, NY, 1982.Google Scholar
  27. 27.
    W.J. Boettinger and M.J. Aziz:Acta Metall., 1989, vol. 37, p. 3379.CrossRefGoogle Scholar
  28. 28.
    J.A. West, J.T. Manos, and M.J. Aziz:Mater. Res. Soc. Symp. Proc., 1991, vol. 213, p. 859.Google Scholar
  29. 29.
    W.J. Boettinger, L.A. Bendersky, J.A. West, M.J. Aziz, and J. Cline:Mater. Sci. Eng., 1991, vol. A133, p. 592.Google Scholar
  30. 30.
    J.A. West: Ph.D. Thesis, Harvard University, Cambridge, MA, 1993.Google Scholar
  31. 31.
    T. Kaplan, M.J. Aziz, and L.J. Gray:J. Chem. Phys., 1989, vol. 90, p. 1133.CrossRefGoogle Scholar
  32. 32.
    T. Kaplan, M.J. Aziz, and L.J. Gray:J. Chem. Phys., 1993, vol. 99, p. 8031.CrossRefGoogle Scholar
  33. 33.
    J.A. Kittl, M.J. Aziz, D.P. Brunco, and M.O. Thompson:Appl. Phys. Lett., 1994, vol. 64, p. 2359.CrossRefGoogle Scholar
  34. 34.
    D.P. Brunco, J.A. Kittl, C.E. Otis, P.M. Goodwin, M.O. Thompson, and M.J. Aziz:Rev. Sci. Instrum., 1993, vol. 64, p. 2615.CrossRefGoogle Scholar
  35. 35.
    J.W. Cahn:Acta Metall., 1962, vol. 10, p. 789.CrossRefGoogle Scholar
  36. 36.
    P. Gordon and R.A. Vandermeer: inRecrystallization, Grain Growth and Textures, ASM, Metals Park, OH, 1966, p. 205.Google Scholar
  37. 37.
    J.E. Krzanowski and S.M. Allen:Acta Metall., 1979, vol. 31, p. 213.Google Scholar
  38. 38.
    A.A. Wheeler, G.B. McFadden, and W.J. Boettinger:Phys. Rev. E, 1993, vol. 47, p. 1893.CrossRefGoogle Scholar
  39. 39.
    J.A. Kittl (Texas Instruments, Dallas, TX) and M.J. Aziz (Harvard University, Cambridge, MA): unpublished research (1995).Google Scholar
  40. 40.
    K.A. Jackson, G.H. Gilmer, and D.E. Temkin:Phys. Rev. Lett, 1995, vol. 75, p. 2530.CrossRefGoogle Scholar
  41. 41.
    W.W. Mullins:J. Appl. Phys., 1957, vol. 28, p. 333.CrossRefGoogle Scholar
  42. 42.
    W.W. Mullins:J. Appl. Phys., 1959, vol. 30, p. 77.CrossRefGoogle Scholar
  43. 43.
    C. Herring: inStructure and Properties of Solid Surfaces, R. Gomer and C.S. Smith, eds., University of Chicago Press, Chicago, IL, 1953, p. 5.Google Scholar
  44. 44.
    W.W. Mullins and R.F. Sekerka:J. Appl. Phys., 1964, vol. 35, p. 444.CrossRefGoogle Scholar
  45. 45.
    S.M. Allen and J.W. Cahn:Acta Metall., 1979, vol. 27, p. 1085.CrossRefGoogle Scholar
  46. 46.
    P. Baeri, G. Foti, J.M. Poate, S.U. Campisano, and A.G. Cullis:Appl. Phys. Lett, 1981, vol. 38, p. 800.CrossRefGoogle Scholar
  47. 47.
    K.A. Jackson: inSurface Modification and Alloying by Laser, Ion and Electron Beams, J.M. Poate, G. Foti, and D.C. Jacobson, eds., Plenum Press, New York, NY, 1983, p. 51.Google Scholar
  48. 48.
    K.A. Jackson, G.H. Gilmer, and H.J. Leamy: inLaser and Electron Processing of Materials, C.W. White and P.S. Peercy, eds., Academic Press, New York, NY, 1980, p. 104.Google Scholar
  49. 49.
    G.H. Gilmer:Mater. Sci. Eng., 1984, vol. 65, p. 15.CrossRefGoogle Scholar
  50. 50.
    B.C. Larson, J.Z. Tischler, and D.M. Mills:J. Mater. Res., 1986, vol. 1, p. 144.Google Scholar
  51. 51.
    B.C. Larson, J.Z. Tischler, and D.M. Mills:Mater. Res. Soc. Symp. Proc, 1988, vol. 100, p. 513.Google Scholar
  52. 52.
    M.O. Thompson, P.H. Bucksbaum, and J. Bokor:Mater. Res. Soc. Symp. Proc, 35, 181 (1985).Google Scholar
  53. 53.
    D.H. Lowndes, J.G.E. Jellison, S.J. Pennycook, S.P. Withrow, and D.N. Mashbum:Appl. Phys. Lett, 1986, vol. 48, p. 1389.CrossRefGoogle Scholar
  54. 54.
    G.J. Galvin, J.W. Mayer, and P.S. Peercy:Appl. Phys. Lett., 1985, vol. 46, p. 644.CrossRefGoogle Scholar
  55. 55.
    P.H. Bucksbaum and J. Bokor:Phys. Rev. Lett., 1984, vol. 53, p. 182.CrossRefGoogle Scholar
  56. 56.
    J.Y. Tsao, M.J. Aziz, M.O. Thompson, and P.S. Peercy:Phys. Rev. Lett., 1986, vol. 56, p. 2712.CrossRefGoogle Scholar
  57. 57.
    S.R. Coriell and D. Turnbull:Acta Metall, 1982, vol. 30, p. 2135.CrossRefGoogle Scholar
  58. 58.
    M.J. Aziz and W.J. Boettinger:Acta Metall. Mater, 1994, vol. 42, p. 527.CrossRefGoogle Scholar
  59. 59.
    M. Carrard, M. Gremaud, M. Zimmermann, and W. Kurz:Acta Metall. Mater., 1992, vol. 40, p. 983.CrossRefGoogle Scholar
  60. 60.
    W.J. Boettinger and S.R. Coriell: inScience and Technology of the Undercooled Melt, P.R. Sahm, H. Jones, and CM. Adams, eds., Martinus Nijhoff, Dordrecht, The Netherlands, 1986, p. 81.Google Scholar
  61. 61.
    W.J. Boettinger, S.R. Coriell, and R. Trivedi: inRapid Solidification Processing: Principles and Technologies IV, R. Mehrabian and P.A. Parrish, eds., Claitor’s, Baton Rouge, LA, 1988, p. 13.Google Scholar
  62. 62.
    D.P. Brunco: Ph.D. Thesis, Cornell University, Ithaca, NY, 1995.Google Scholar
  63. 63.
    D.P. Brunco, M.O. Thompson, D.E. Hoglund, and M.J. Aziz:Mater. Res. Soc. Symp. Proc., 1995, vol. 354.Google Scholar
  64. 64.
    S.R. Coriell and R.F. Sekerka:J. Cryst. Growth, 1983, vol. 61, p. 499.CrossRefGoogle Scholar
  65. 65.
    M.J. Aziz (Harvard University, Cambridge, MA): unpublished research (1995).Google Scholar
  66. 66.
    K. Eckler, R.F. Cochrane, D.M. Herlach, B. Feuerbacher, and M. Jurisch:Phys. Rev. B, 1992, vol. 45, p. 5019.CrossRefGoogle Scholar
  67. 67.
    K. Eckler, D.M. Herlach, and M.J. Aziz:Acta Metall. Mater., 1994, vol. 42, p. 975.CrossRefGoogle Scholar
  68. 68.
    M.J. Aziz:J. Appl. Phys., 1982, vol. 53, p. 1158.CrossRefGoogle Scholar
  69. 69.
    P.M. Smith: Ph.D. Thesis, Harvard University, Cambridge, MA, 1992.Google Scholar
  70. 70.
    M.O. Thompson: Ph.D. Thesis, Cornell University, Ithaca, NY, 1984.Google Scholar

Copyright information

© The Minerals, Metals & Material Society 1996

Authors and Affiliations

  • Michael J. Aziz
    • 1
  1. 1.Division of Applied SciencesHarvard UniversityCambridge

Personalised recommendations