## Abstract

In this paper we deal with multidimensional wavelets arising from a multiresolution analysis with an arbitrary dilation matrix A, namely we have scaling equations

where ϕ^{1} is a scaling function for this multiresolution and ϕ^{2}, …, ϕ^{q} (q=|*det* A |) are wavelets. Orthogonality conditions for ϕ^{1}, …, ϕ^{q} naturally impose constraints on the scaling coefficients\(\{ h_k^s \} _{k \in \mathbb{Z}^n }^{s = 1, \ldots ,q} \), which are then called the wavelet matrix. We show how to reconstruct functions satisfying the scaling equations above and show that ϕ^{2}, …, ϕ^{q} always constitute a tight frame with constant 1. Furthermore, we generalize the sufficient and necessary conditions of orthogonality given by Lawton and Cohen to the case of several dimensions and arbitrary dilation matrix A.

### Similar content being viewed by others

## References

Cohen, A. (1990). Ondelettes, analyses multirésolutions et filtres en quadrature.

*Ann. Inst. H. Poincairé-Analyse non linéaire.***7**, 439–459.Cohen, A. and Daubechies, I. (1993). Non-separable bidimensional wavelet bases,

*Revista Mat. Iberoamericana*, 51–137.Daubechies, I. (1992). Ten Lectures on Wavelets.

*CBMS-NSF Reg. Conf. Ser. Appl. Math., SIAM*, Philadelphia, PA.Gröchenig, K. (1994). Orthogonality Criteria for Compactly Supported Scaling Functions.

*Appl. Computational Harmonic Anal.*,**1**, 242–245.Gröchenig, K. and Haas, A. (1994). Self-Similar Lattice Tilings.

*J. Fourier Analysis and Appl.*,**1**, 131–170.Gröchenig, K. and Madych, W.R. (1992). Multiresolution Analysis, Haar Bases, and Self-Similar Tilings of ℝ

^{n}.*IEEE Trans. Inform. Theory.***38**, 556–568.Heller, P.N., Resnikoff, K.L. and Wells, Jr., R.O. (1992).

*Wavelet Matrices and the Representation of Discrete Functions*. Wavelets: A Tutorial in Theory and Applications. Chui, C.K., Ed., 15–50.Lagarias, J.C. and Wang, Y. (1996). Self-Affine Tiles in ℝ

^{n}.*Adv. Math.***121**, 21–49.Lagarias, J.C. and Wang, Y. (1996). Integral Self-Affine Tiles in ℝ

^{n}. I. Standard and nonstandard digit sets.*J. London Math. Soc.***54**, 161–179.Lagarias, J.C. and Wang, Y. Integral Self-Affine Tiles in ℝ

^{n}. II. Lattice tilings. preprint.Lagarias, J.C. and Wang, Y. (1996). Haar Bases for

*L*^{2}(ℝ^{n}) and Algebraic Number Theory.*J.Number Theory*.**57**, 181–197.Lagarias, J.C. and Wang, Y. (1995). Haar-Type Orthonormal Wavelet Bases in ℝ

^{2}.*J. Fourier Analysis and Appl.***2**, 1–14.Lagarias, J.C. and Wang, Y. Orthogonality Criteria for Compactly Supported Scaling Functions in ℝ

^{n}. preprint.Lawton, W.M. (1990). Tight frames of compactly supported affine wavelets.

*J. Math. Phys.***31**, 1898–1901.Lawton, W.M. (1991). Necessary and sufficient conditions for constructing orthonormal wavelet bases.

*J. Math. Phys.***32**, 57–61.Madych, W.R. (1992).

*Some Elementary Properties of Multiresolution Analyses of L*^{2}(ℝ^{n}). Wavelets: A Tutorial in Theory and Applications. Chui, C.K., Ed., 259–294.Meyer, Y. (1992). Wavelets and operators.

*Cambridge studies in advanced mathematics*. 37.Strichartz, R.S. (1993). Wavelets and self-affine tilings.

*Constructive Approx.***9**, 327–346.Wojtaszczyk, P. (1996). A Mathematical Introduction to Wavelets.

*London Mathematical Society Student Texts*.**37**.

## Author information

### Authors and Affiliations

## Rights and permissions

## About this article

### Cite this article

Bownik, M. Tight frames of multidimensional wavelets.
*The Journal of Fourier Analysis and Applications* **3**, 525–542 (1997). https://doi.org/10.1007/BF02648882

Received:

Issue Date:

DOI: https://doi.org/10.1007/BF02648882