Skip to main content
Log in

Structure formation during processing short carbon fiber- reinforced aluminum alloy matrix composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Nickel- and copper-coated, as well as uncoated, short carbon fibers were dispersed in melts of aluminum or aluminum alloys by stirring followed by solidification of composite melts. Microstructural examina-tion of cast composites indicated extensive damage to the surface of the carbon fibers when uncoated carbon fibers were introduced into the melt under the conditions of the present investigation. When nickel- or copper-coated carbon fibers were used to make composites under similar conditions, the fibers generally did not exhibit observable amounts of fiber surface degradation at the interface, except for small islands of an Al4C3 phase. When nickel-coated carbon fibers were used to make composites, the coating reacted with the melt, and NiAl3 intermetallic phase particles were observed in the matrix away from the fibers, indicating a preference for nucleation of NiAl3 away from the fiber surfaces. Under a transmission electron microscope (TEM), the NiAl3 phase was not observed on the surface of carbon fi-bers, except in some regions where the NiAl3 phase engulfed the carbon fibers during growth. When cop-per-coated carbon fibers were used to make composites, the coating reacted with the melt, and particles of CuAl2 intermetallic compound were generally dispersed in the matrix away from the fibers, except for a few locations where the CuAl2 phase was found at the interface under TEM observation. These micro-structures are discussed in terms of nucleation of primary α aluminum and NiAl3 or CuAl2 phases and the interaction between short carbon fibers and these phases during growth while the composite was so-lidifying. Additionally, the role of the reaction between nickel or copper coatings and the melt on struc-ture formation is discussed; some of the differences between the nickel and copper coatings are attributed to the fact that nickel dissolves with an exothermic reaction. The differences between solidification of short fiber composites and particle or fiber composite are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.K. Rohatgi. R. Asthana. and S. Das,Int. Met. Rev.. Vol 31 (No. 31), 1986, p 115–139

    Google Scholar 

  2. A. Mortcnscn, M.N. Gungor, J.A. Cornie, and M.C. Flemings,JOM, Vol 38 (No. 10), 1986, p 30

    Google Scholar 

  3. P.K. Rohatgi, R. Asthana, and F.M. Yarandi, inSolidification of Metal Matrix Composites. P. Rohatgi, Ed., TMS, 1990, p 57-76

  4. A. Mortcnsen, M.N. Gungor, J.A. Cornie. and M.C. Flemings,JOM, Vol 3, 1986, p 30–35

    Google Scholar 

  5. A. Mortensen, inSolidification of Metal Matrix Composites. P. Rohatgi, Ed., TMS, 1990, p 1-21

  6. D.J. Lloyd,Comp. Sci. Technol., Vol 35, 1989, p 159–179

    Article  CAS  Google Scholar 

  7. E.M. Klier, A. Mortensen, J.A. Cornie, and M.C. Flemings,.J. Mater. Sci., Vol 26, 1991, p 25 19–2526

    Article  CAS  Google Scholar 

  8. B.C. Pai, S.G.K. Pillai, R.M. Pillai, and K.G. Satyanarayana, inSolidification of Metal Matrix Composites, P. Rohatgi, Ed., TMS, 1990, p 191-203

  9. B.K. Dhindaw, A. Moitra, D.M. Stcfancscu, and P. Curreri,Met- all. Trans. A, Vol 19, 1988, p 1899–1904

    Article  Google Scholar 

  10. S. Abraham, B.C. Pai, K.G. Satyanarayana, and V.K. Vaidyan,J. Mater. Sci., Vol 25. 1990, p 2839–2845

    Article  CAS  Google Scholar 

  11. S. Abraham, B.C. Pai, K.G. Satyanarayana, and V.K. Vaidyan,J. Mater. Sci., Vol 7, 1992, p 3479–3486

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciby, S., Pai, B.C., Satyanarayana, K.G. et al. Structure formation during processing short carbon fiber- reinforced aluminum alloy matrix composites. JMEP 2, 353–357 (1993). https://doi.org/10.1007/BF02648822

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648822

Keywords

Navigation