Skip to main content
Log in

The influence of crack length on fatigue crack growth in deep sharp notches

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The fatigue crack growth rateda/dN of short cracks and the transition to long crack behavior were investigated for ARMCO-iron. Deep notched specimens with very small notch radius (between 1.5 and 4 μm) were used. The experiments were performed with constant stress intensity ranges for various stress ratios; the fatigue crack growth rate was measured as a function of the crack length. The results permit a discussion of the mechanisms responsible for the different behavior of “short” and “long” cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Annual Book of ASTM Standards, Part 10, ASTM E 647, 1980.

  2. J. Schijve:Engineering Fracture Mechanics, 1979, vol. 11, pp. 167–221.

    Article  Google Scholar 

  3. S. Pearson:Engineering Fracture Mechanics, 1975, vol. 7, pp. 235–47.

    Article  CAS  Google Scholar 

  4. E.R. deLos Rios, Z. Tang, and K.J. Miller:Fat. Engng. Mat. Struct., 1984, vol. 7, pp. 97–108.

    Article  Google Scholar 

  5. W.L. Morris:Metall. Trans. A, 1977, vol. 8A, pp. 589–96.

    CAS  Google Scholar 

  6. W. L. Morris, M. R. James, and O. Buck:Engineering Fracture Mechanics, 1983, vol. 18, pp. 871–77.

    Article  Google Scholar 

  7. F. Heubaum and M.E. Fine:Scripta Metall., 1984, vol. 18, pp. 1235–40.

    Article  Google Scholar 

  8. A.J. McEvily and K. Minakawa:Scripta Metall., 1984, vol. 18, pp. 71–76.

    Article  Google Scholar 

  9. A. Pineau:Proceedings 5th ECF, Lisbon, 1984, pp. 3–17.

  10. M.N. James and G.C. Smith:Int. J. Fatigue, 1983, vol. 5, pp. 75–78.

    Article  Google Scholar 

  11. H. Sehitoglu:Engineering Fracture Mechanics, 1985, vol. 21, pp. 329–39.

    Article  Google Scholar 

  12. J. Lankford, D. L. Davidson, and K. S. Chan:Metall. Trans. A, 1984, vol. 15A, pp. 1579–88.

    Google Scholar 

  13. J. Schijve:Fatigue Thresholds, Proceedings, Stockholm, 1981, vol. II, pp. 881–908.

    Google Scholar 

  14. M. Klesnil, J. Polák, and P. Liskutin:Scripta Metall., 1984, vol. 18, pp. 1231–34.

    Article  CAS  Google Scholar 

  15. O. N Romaniv, V. N. Siminkovich, and A.N. Tkach:Fatigue Thresholds, Proceedings, Stockholm, 1981, vol. II, pp. 799–801.

    Google Scholar 

  16. T. H. Topper and M. H. Haddad:Fatigue Thresholds, Proceedings, Stockholm, 1981, vol. II, pp. 777–98.

    Google Scholar 

  17. W.L. Morris:Metall. Trans. A, 1980, vol. 11A, pp. 1117–23.

    CAS  Google Scholar 

  18. S. Suresh and R. O. Ritchie:International Metals Reviews, 1984, vol. 29, pp. 445–76.

    Google Scholar 

  19. J. Lankford:Fat. Engng. Mat. Struct., 1985, vol. 8, pp. 161–75.

    Article  Google Scholar 

  20. P. K. Liaw and W. A. Logsdon:Engineering Fracture Mechanics, 1985, vol. 22, pp. 115–21.

    Article  Google Scholar 

  21. K. Tanaka and Y. Nakai:Fat. Engng. Mat. Struct., 1983, vol. 6, pp. 315–27.

    Article  Google Scholar 

  22. E. Zaiken and R. O. Ritchie:Metall. Trans. A, 1985, vol. 16A, pp. 1467–77.

    CAS  Google Scholar 

  23. J. A. Lewis:Scripta Metall., 1984, vol. 18, pp. 625–26.

    Article  CAS  Google Scholar 

  24. K. Minakawa, H. Nakamura, and A.J. McEvily:Scripta Metall., 1984, vol. 18, pp. 1371–74.

    Article  Google Scholar 

  25. H. Kitagawa, R. Yuuki, and T. Ohira:Engineering Fracture Mechanics, 1975, vol. 7, pp. 515–29.

    Article  Google Scholar 

  26. S. Suresh:Metall. Trans. A, 1983, vol. 14A, pp. 2375–85.

    Google Scholar 

  27. S. Suresh:Metall. Trans. A, 1985, vol. 16A, pp. 249–60.

    CAS  Google Scholar 

  28. W. Elber:Engineering Fracture Mechanics, 1970, vol. 2, pp. 37–45.

    Article  Google Scholar 

  29. R. O. Ritchie:Fatigue Thresholds, Proceedings, Stockholm, 1981, vol. I, pp. 503–26.

    Google Scholar 

  30. S. Suresh, G. F. Zaminski, and R. O. Ritchie:Metall. Trans. A, 1981, vol. 12A, pp. 1435–43.

    Google Scholar 

  31. N. E. Dowling:Fat. Engng. Mat. Struct., 1979, vol. 2, pp. 129–38.

    Article  Google Scholar 

  32. J. C. Newman: NASA TN D-6376, Nat. Aero. and Space Admin., Washington, DC, 1971.

    Google Scholar 

  33. S. Suresh:Engineering Fracture Mechanics, 1985, vol. 21, pp. 453–63.

    Article  Google Scholar 

  34. R. Pippan:Fat. Engng. Mat. Struct., 1986, in press.

  35. M. R. James, W. L. Morris, and A. K. Zurek:Fat. Engng. Mat. Struct., 1983, vol. 6, pp. 293–305.

    Article  Google Scholar 

  36. A. J. Cadman, R. Brook, and C. E. Nicholson:Fatigue Thresholds, Proceedings, Stockholm, 1981, vol. I, pp. 59–75.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Graduate Student, Institut für

Formerly Graduate Student, Institut für

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pippan, R., Berger, M. & Stüwe, H.P. The influence of crack length on fatigue crack growth in deep sharp notches. Metall Trans A 18, 429–435 (1987). https://doi.org/10.1007/BF02648804

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648804

Keywords

Navigation