Metallurgical Transactions A

, Volume 15, Issue 7, pp 1437–1441 | Cite as

Prior deformation effects on creep and fracture in inconel alloy X-750

  • M. C. Pandey
  • A. K. Mukherjee
  • D. M. R. Taplin
Mechanical Behavior


Creep fracture process in Inconel alloy X-750 can be modified by room-temperature prestraining. It has been observed that fracture in the prestrained specimens occurred due to growth and interlinkage of the prenucleated voids whereas failure occurred by plastic instability in the non-prestrained specimens. Creep ductility and the times-to-rupture are found to decrease progressively with room-temperature prestraining, but there is no marked influence on the minimum creep rate. This is explained in terms of two compcting processes: a weakening effect caused by prenucleation of grain boundary voids and a hardening effect due to generation of dislocations due to the prestraining.


Metallurgical Transaction Creep Rate Creep Strain Edge Crack Minimum Creep Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.W. Davis, J.D. Richards, and B. Wilshire:J. Inst. Metals, 1961-62, vol. 90, pp. 431–33.Google Scholar
  2. 2.
    B. F. Dyson and M. J. Rodgers:Metal Sci., 1974, vol. 8, pp. 261–66.Google Scholar
  3. 3.
    T. Udoguchi:Proc. Instn. Mech. Engrs., 1980, vol. 194, pp. 391–402.Google Scholar
  4. 4.
    H. Burt, I.C. Elliot, and B. Wilshire:Metal Sci., 1981, vol. 15, pp. 421–24.Google Scholar
  5. 5.
    B. F. Dyson and D. E. Henn:J. Microsc, 1973, vol. 97, p. 165.Google Scholar
  6. 6.
    B. F. Dyson and M. S. Loveday:Inst. Mech. Engr., 1980, c 205/80, pp. 61–66.Google Scholar
  7. 7.
    B. F. Dyson:Can. Met. Quart., 1979, vol. 18, p. 31.Google Scholar
  8. 8.
    M.C. Pandey, B. F. Dyson, and D.M.R. Taplin:Proc. Roy. Soc. London, 1984, in press.Google Scholar
  9. 9.
    “Engineering Properties on INCONEL alloy X-750,” Technical Bulletin T-38, Huntington Alloy Products Division of the International Nickel Company, Inc., Huntington, WV.Google Scholar
  10. 10.
    B. F. Dyson and M. McLean:Acta Metall., 1983, vol. 31, pp. 17–27.CrossRefGoogle Scholar
  11. 11.
    M.C. Pandey: Ph.D. Thesis, University of Waterloo, Ontario, Canada, 1982.Google Scholar
  12. 12.
    T. Saesusa, M. Uemura, and J. R. Weertman:Metall. Trans. A, 1980, vol. 11 A, p. 1453.Google Scholar
  13. 13.
    T. G. Nieh and W. D. Nix:Acta Metall., 1980, vol. 28, pp. 557–66.CrossRefGoogle Scholar
  14. 14.
    D. Sidey and B. Wilshire:Metal Sci. J., 1969, vol. 3, pp. 56–60.Google Scholar
  15. 15.
    N.J. Grant, A. R. Chandhuri, I. R. Silver, and D.G. Ganow:Trans. TMS-AIME, 1959, vol. 215, pp. 540–44.Google Scholar
  16. 16.
    T.G.NiehandW. D. Nix:Acta Metall., 1979, vol. 27, pp. 1099–106.Google Scholar

Copyright information

© The Metallurgical Society of American Institute of Mining 1984

Authors and Affiliations

  • M. C. Pandey
    • 1
  • A. K. Mukherjee
    • 2
  • D. M. R. Taplin
  1. 1.Division of Materials Science and Engineering,Department of Mechanical EngineeringUniversity of CaliforniaDavis
  2. 2.Department of Mechanical and Manufacturing EngineeringTrinity College, University of DublinDublinIreland

Personalised recommendations