Skip to main content
Log in

Theoretical model for FCGR near the threshold

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A theoretical model for fatigue crack growth rate at low and near threshold stress intensity factor is developed. The crack tip is assumed to be a semicircular notch of radius ρ and incremental crack growth occurs along a distance 4ρ ahead of the crack tip. After analysis of the stress and strain distribution ahead of the crack tip, a relationship between the strain range and the stress intensity range is proposed. It is then assumed that Manson-Coffin cumulative rule can be applied to a region of length 4ρ from the crack tip, where strain reversal occurs. Finally, a theoretical equation giving the fatigue crack growth rate is obtained and applied to several materials (316L stainless steel, 300M alloy steel, 70-30 α brass, 2618A and 7025 aluminum alloys). It is found that the model can be used to correlate fatigue crack growth rates with the mechanical properties of the materials, and to determine the threshold stress intensity factor, once the crack tip radius α is obtained from the previous data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Yokobori, S. Konosu, and A. T. Yokobori, Jr.:Fracture 77, vol. 1, pp. 665–82, Waterloo (Canada), 1977.

    Google Scholar 

  2. F. A. McClintock: ASTM STP 415, p. 169, 1966.

  3. R. O. Ritchie:Met. Sci., 1977, vol. 11, pp. 368–81.

    Article  CAS  Google Scholar 

  4. B. Tomkins:Philos. Mag., 1968, vol. 18, pp. 1041–66.

    CAS  Google Scholar 

  5. S. D. Antolovich, A. Saxena, and G. R. Chanani:Eng. Fract. Mech., 1975, vol. 7, pp. 649–52.

    Article  CAS  Google Scholar 

  6. F. A. McClintock:Fracture of Solids, p. 65, John Wiley, 1963.

  7. S. B. Chakrabortty:Fatigue Eng. Mater. Struct., 1979, vol. 2, pp.331–44.

    Article  Google Scholar 

  8. C. J. Beevers:Met. Sci., 1977, vol. 11, pp. 362–67.

    CAS  Google Scholar 

  9. A. T. Yokobori, Jr.:Int. J. Fract., 1978, vol. 14, pp. R137–39.

    Google Scholar 

  10. V. Weiss and D. N. Lal:Met. Trans., 1974, vol. 5, pp. 1946–48.

    Article  CAS  Google Scholar 

  11. R. Hill:The Mathematical Theory of Plasticity, 1st ed., p. 248, Oxford University Press, London, 1950.

    Google Scholar 

  12. F. A. McClintock and G. R. Irwin: ASTM STP 381, p. 84, 1965.

  13. H. M. Westergaard:Trans. ASME, 1939, vol. 61, p. 49.

    Google Scholar 

  14. J. R. Rice and G. F. Rosengren:J. Mech. Phys. Sol., 1968, vol. 16, pp. 1–12.

    Article  Google Scholar 

  15. T. R. Wilshaw:J. Iron Steel Inst., 1966, vol. 204, p. 936.

    CAS  Google Scholar 

  16. A. S. Tetelman and A. J. McEvily, Jr.:Fracture of Structural Materials, p. 305, John Wiley, 1967.

  17. J. R. Rice: ASTM STP 415, p. 247, 1966.

  18. P. Kurath: report no. 429, Department of Theoretical and Applied Mechanics, University of Illinois, Urbana, 1978.

  19. J. Lanteigne: Doctorat thesis, Metallurgical Engineering Department, Ecole Polytechnique de Montréal, Canada, 1979.

  20. A. Pineau and P. Petrequin:La Fatigue des matériaux et des structures, pp. 107–61, C. Bathias and J. P. Baïlon Ed., Paris, 1980.

  21. Metals Handbook, 9th ed., vol. 1, p. 671, ASM, 1978.

  22. L. P. Karjalainen:Met. Sci., 1978, vol. 12, pp. 571–75.

    Article  CAS  Google Scholar 

  23. C. Bathias and G. Hilaire: Report no. 38013, Société Nationale Industrielle d’Aérospatiale, Suresnes, France, April 1978.

  24. A. Bigonnet: Master thesis, Metallurgical Engineering Department, Ecole Polytechnique de Montréal, Canada, 1980.

  25. C. Bathias and R. M. Pelloux:Met. Trans., 1973, vol. 4, pp.1265–73.

    Google Scholar 

  26. R. C. Bates and N. G. Clark:Trans. ASM, 1969, vol. 62, pp.380–89.

    Google Scholar 

  27. J. P. Kershaw and H. N. Liu:Int. J. Fract. Mech., 1971, vol. 7, pp.269–76.

    Google Scholar 

  28. J. P. Baïlon, J. Masounave and J. I. Dickson:La Fatigue des matériaux et des structures, pp. 237–69, C. Bathias and J. P. Baïlon Ed., Paris, 1980.

  29. S. Majumdar and J. D. Morrow: ASTM STP 559, pp. 159–82, 1974.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanteigne, J., Baïlon, JP. Theoretical model for FCGR near the threshold. Metall Trans A 12, 459–466 (1981). https://doi.org/10.1007/BF02648543

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648543

Keywords

Navigation