Skip to main content

Isothermal fatigue of an aluminide-coated single-crystal superalloy: Part I

Abstract

The isothermal fatigue behavior of a high-activity aluminide-coated single-crystal superalloy was studied in air at test temperatures of 600 °, 800 °, and 1000 °. Tests were performed using cylindrical specimens under strain control at ≈0.25 Hz; total strain ranges from 0.5 to 1.6 pct were investigated. At 600 °, crack initiation occurred at brittle coating cracks, which led to a significant reduction in fatigue life compared to the uncoated alloy. Fatigue cracks grew from the brittle coating cracks initially in a stage II manner with a subsequent transition to crystallographic stage I fatigue. At 800 ° and 1000 °, the coating failed quickly by a fatigue process due to the drastic reduction in strength above 750 °, the ductile-brittle transition temperature. These cracks were arrested or slowed by oxidation at the coating-substrate interface and only led to a detriment in life relative to the uncoated material for total strain ranges of 1.2 pct and above 800 °. The presence of the coating was beneficial at 800 ° for total strain ranges less than 1.2 pct. No effect of the coating was observed at 1000 °. Crack growth in the substrate at 800 ° was similar to 600 °; at 1000 °, greater plasticity and oxidation were observed and cracks grew exclusively in a stage II manner.

This is a preview of subscription content, access via your institution.

References

  1. G.W. Meetham:Mater. Sci. Technol., 1986, vol. 2, pp. 290–94.

    CAS  Google Scholar 

  2. R. Sivakumar and B.L. Mordike:Surf. Coat. Technol., 1989, vol. 37, pp. 139–60.

    Article  CAS  Google Scholar 

  3. J.-M. Veys and R. Mevrel:Mater. Sci. Eng., 1987, vol. 88, pp. 253- 60.

    Article  CAS  Google Scholar 

  4. M.I. Wood:Surf. Coat. Technol., 1989, vols. 39-40, pp. 29–42.

    Article  CAS  Google Scholar 

  5. G.W. Goward and D.H. Boone:Oxid. Met., 1971, vol. 3, pp. 475–95.

    Article  CAS  Google Scholar 

  6. A. Ball and R.E. Smallman:Acta Metall., 1966, vol. 14, pp. 1349–55.

    Article  CAS  Google Scholar 

  7. T.C. Totemeier, W.F. Gale, and J.E. King:Mater. Sci. Eng., 1993, vol. A169, pp. 19–26.

    CAS  Google Scholar 

  8. F.J. Pennisi and D.K. Gupta:Thin Solid Flims, 1981, vol. 84, pp. 49- 58.

    Article  CAS  Google Scholar 

  9. W.F. Gale and J.E. King:Metall. Trans. A, 1992, vol. 23A, pp. 2657- 65.

    CAS  Google Scholar 

  10. S. Suresh:Fatigue of Materials, Cambridge University Press, Cambridge, United Kingdom, 1991, pp. 136–40.

    Google Scholar 

  11. T.N. Rhys-Jones and D.F. Bettridge: inAdvanced Materials and Processing Techniques for Structural Applications, T. Khan and A. Lasalmonie, eds., ONERA, Chatillon, France, 1988, pp. 129–58.

    Google Scholar 

  12. P. Hancock, H.H. Chien, J.R. Nicholls, and DJ. Stephenson:Surf Coat. Technol, 1990, vols. 43-44, pp. 359–70.

    Article  Google Scholar 

  13. T.C. Totemeier: Ph.D. Thesis, University of Cambridge, Cambridge, United Kingdom, 1994.

    Google Scholar 

  14. M.I. Wood: inAdvanced Materials and Processing Techniques for Structural Applications, T. Khan and A. Lasalmonie, eds., ONERA, Chatillon, France, 1988, pp. 179–88.

    Google Scholar 

  15. G.R. Leverant and M. Gell:Metall. Trans. A, 1975, vol. 6A, pp. 367- 71.

    CAS  Google Scholar 

  16. B.F. Antolovich, A. Saxena, and S.D. Antolovich: inSuperalloys 1992, S.D. Antolovich, R.W. Strusrud, R.A. MacKay, D.L. Anton, T. Khan, R.D. Kissinger, and D.L. Klarstrom, eds., TMS, Warrendale, PA, 1992, pp. 727–36.

    Google Scholar 

  17. A. Defresne and L. Rémy:Mater. Sci. Eng., 1990, vol. A129, pp. 55- 64.

    CAS  Google Scholar 

  18. J.S. Crompton and J.W. Martin:Metall. Trans. A, 1984, vol. 15A, pp. 1711–19.

    CAS  Google Scholar 

  19. A. Diboine, J.M. Peltier, and R.M. Pelloux: inHigh Temperature Fracture Mechanisms and Mechanics, P. Bensussam ed., Mechanical Engineering Publications, Bury St Edmunds, United Kingdom, 1990, pp. 421–46.

    Google Scholar 

  20. E. Fleury and L. Rémy:Mater. Sci. Eng., 1993, vol. A167, pp. 23- 30.

    CAS  Google Scholar 

  21. G.R. Leverant and M. Gell:Trans. TMS-AIME, 1969, vol. 245, pp. 1167–73.

    CAS  Google Scholar 

  22. D.P. Rooke and D.J. Cartwright:Compendium of Stress Intensity Factors, Her Majesty's Stationery Office, London, 1976, pp. 237–38.

    Google Scholar 

  23. Rolls-Royce plc, Derby, United Kingdom, personal communication, 1992.

  24. H.J. Kolkman:Mater. Sci. Eng., 1987, vol. 89, pp. 81–91.

    Article  CAS  Google Scholar 

  25. G.A. Whitlow, R.L. Johnson, W.H. Pridemore, and J.M. Allen:J. Eng. Mater. Technol, 1984, vol. 106, pp. 43–49.

    Article  CAS  Google Scholar 

  26. C.H. Wells and C.P. Sullivan:Trans. ASM, 1968, vol. 61, pp. 149- 53.

    Google Scholar 

  27. A. Strang and E. Lang: inHigh Temperature Alloys for Gas Turbines 1982, R. Brunetaud, D. Coutsouradis, T.B. Gibbons, Y. Lindblom, D.B. Meadowcroft, and R. Stickler, eds., D. Reidel Publishing Co., Dordrecht, United Kingdom, 1982, pp. 469–506.

    Google Scholar 

  28. H.W. Grünling, K. Schneider, and L. Singheiser:Mater. Sci. Eng., 1987, vol. 88, pp. 177–89.

    Article  Google Scholar 

  29. J. Gayda, T.P. Gabb, and R.V. Miner: inSuperalloys 1988, S. Reichman, D.N. Duhl, G. Maurer, S. Antolovich, and C. Lund, eds., TMS, Warrendale, PA, 1988, pp. 575–84.

    Google Scholar 

  30. A.J.A. Mom and H.J.C. Hersbach:Mater. Sci. Eng., 1987, vol. 87, pp. 361–67.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Research Student, Department of Materials Science and Metallurgy, University of Cambridge.

Formerly Lecturer, Department of Materials Science and Metallurgy, University of Cambridge CB2 3QZ, United Kingdom.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Totemeier, T.C., King, J.E. Isothermal fatigue of an aluminide-coated single-crystal superalloy: Part I. Metall Mater Trans A 27, 353–361 (1996). https://doi.org/10.1007/BF02648412

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648412

Keywords

  • Fatigue
  • Material Transaction
  • Fatigue Crack
  • Fatigue Life
  • Fatigue Crack Growth