Skip to main content
Log in

Plastic anisotropy of sheets with continuously varying anisotropic parameters and flow stress

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A continuum mechanics model has been developed on the basis of Hill's theory of orthogonal anisotropy for predicting global mechanical properties of sheets with a through-thickness texture gradient and strength gradient. By the present model, the globalr value and yield and flow stresses of the entire sheet can be predicted from the local anisotropic parameters, yield and flow stresses which are given as arbitrary functions of the through-thickness position of the sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.T. Lankford, S.C. Snyder, and J.A. Bauscher:Trans. Am. Soc. Met., 1950, vol. 42, pp. 1197–1232.

    Google Scholar 

  2. R.L. Whiteley:Trans. Am. Soc. Met., 1960, vol. 52, pp. 154–69.

    CAS  Google Scholar 

  3. R.L. Whiteley, D.E. Wise, and D.J. Blickwede:Sheet Met. Ind., 1961, vol. 38, pp. 349-53 and 358.

    Google Scholar 

  4. T. Sawatani, K. Shimizu, T. Nakayama, and T. Hirai:Trans. Iron Steel Inst. Jpn., 1978, vol. 18, pp. 686–95.

    CAS  Google Scholar 

  5. S. Sato, K. Yamazaki, and S. Ujihara:Trans. Iron Steel Inst. Jpn., 1981, vol. 21, pp. 772–77.

    Google Scholar 

  6. R.S. Burns nand R.H. Heyer:Sheet Met. Industries, 1958, vol. 35, pp. 261–75.

    Google Scholar 

  7. J.A. Elias, R.H. Heyer, and J.H. Smith:Trans. TMS-AIME, 1962, vol. 224, pp. 678–86.

    CAS  Google Scholar 

  8. M. Atkinson, P.G. Brooks, A. O'Connor, and T.G. Phillips:Sheet Met. Industries, 1963, vol. 40, pp. 57–66.

    Google Scholar 

  9. J.F. Held:Trans. TMS-AIME, 1967, vol. 239, pp. 573–76.

    CAS  Google Scholar 

  10. R.H. Goodenow and J.F. Held:Metall. Trans, 1970, vol. 1, pp. 2507–15.

    CAS  Google Scholar 

  11. T. Sawatani, K. Shimizu, T. Nakayama. and M. Miyoshi:Trans. Iron Steel Inst. Jpn., 1978, vol. 18, pp. 676–85.

    CAS  Google Scholar 

  12. T. Senuma, H. Yada, Y. Matsumura, and K. Yamada:J. Iron Steel Inst. Jpn., 1987, vol. 73, pp. 1598–1605.

    CAS  Google Scholar 

  13. S. Hashimoto, T. Yakushiji, T. Kashima, and K. Hosomi:Proc. Int. Conf. Phys. Metall. Thermomech. Proc. Steels and Other Metals (THERMEC 88), Iron Steel Inst. Jpn., Tokyo, 1988, pp. 652–59.

    Google Scholar 

  14. T. Sakai, Y. Saito, K. Hirano, and K. Kato:Trans. Iron Steel Inst. Jpn., 1988, vol. 28, pp. 1028–35.

    CAS  Google Scholar 

  15. T. Sakai, Y. Saito, and K. Kato:Trans. Iron Steel Inst. Jpn., 1988, vol. 28, pp. 1036–42.

    CAS  Google Scholar 

  16. T. Sakai, Y. Saito, M. Matsuo, and K. Kawasaki:Iron Steel Inst. Jpn. Int., 1991, vol. 31, pp. 86–94.

    CAS  Google Scholar 

  17. T. Kashima, S. Hashimoto, H. Inoue, and N. Inakazu:J. Iron Steel Inst. Jpn., 1991, vol. 76, pp. 282–89.

    Google Scholar 

  18. HJ. Bunge:Z. Metallkd., 1965, vol. 56, pp. 872–74.

    CAS  Google Scholar 

  19. R.J. Roe:J. Appl. Phys., 1965, vol. 36, pp. 2024–31.

    Article  CAS  Google Scholar 

  20. G.I. Taylor:J. Inst. Met., 1938, vol. 62, pp. 307–24.

    Google Scholar 

  21. J.F.W. Bishop and R. Hill:Phil. Mag., 1951, vol. 42, pp. 414–27.

    CAS  Google Scholar 

  22. J.F.W. Bishop and R. Hill:Phil. Mag., 1951, vol. 42, pp. 1298–1307.

    CAS  Google Scholar 

  23. J.F.W. Bishop:Phil. Mag., 1953, vol. 44, pp. 51–64.

    CAS  Google Scholar 

  24. P. Van Houtte:Textures and Microstructures, 1987, vol. 7, pp. 29- 72.

    Article  Google Scholar 

  25. P.I. Welch, H.J. Bunge, and CM. Vlad:Arch. Eisenhuttenwes., 1984, vol. 55, pp. 321–24.

    CAS  Google Scholar 

  26. IX. Dillamore and H. Katoh:Met. Sci., 1974, vol. 8, pp. 21–27.

    CAS  Google Scholar 

  27. R. Hill:Mathematical Theory of Plasticity, Clarendon Press, Oxford, 1950, ch. 12.;Proc. R. Soc, Ser A, 1948, vol. 193, pp. 281-97.

    Google Scholar 

  28. T. Sakaki, K. Ohnuma, K. Sugimoto, and Y. Ohtakara:Int. J. Plasticity, 1990, vol. 6, pp. 591–613.

    Article  CAS  Google Scholar 

  29. T. Sakaki, K. Kakehi, and Y. Ohtakara:Int. J. Plasticity, 1991, vol. 7, pp. 505–27.

    Article  CAS  Google Scholar 

  30. Y. Yamada:Plasticity and Viscoelasticity, Baifukan, Tokyo, 1972, pp. 59–84.

    Google Scholar 

  31. R.P. Arthey and W.B. Hutchinson:Metall. Trans. A, 1981, vol. 12A, pp. 1817–22.

    Google Scholar 

  32. T. Nakamura and T. Sakaki:J. Iron Steel Inst. Jpn., 1968, vol. 54, pp. 427–32.

    CAS  Google Scholar 

  33. S. Hashimoto, T. Kashima, and J.H. Zhao:J. Iron Steel Inst. Jpn., 1989, vol. 75, pp. 2194–2201.

    CAS  Google Scholar 

  34. I.S. Sokolnikoff:Mathematical Theory of Elasticity, McGraw-Hill, New York, NY, 1956, pp. 25–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakaki, T., Weng, G.J., Kakehi, K. et al. Plastic anisotropy of sheets with continuously varying anisotropic parameters and flow stress. Metall Mater Trans A 27, 317–326 (1996). https://doi.org/10.1007/BF02648409

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648409

Keywords

Navigation