Skip to main content
Log in

Effect of a solid solution on the steady-state creep behavior of an aluminum matrix composite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of an alloying element, 4 wt pct Mg, on the steady-state creep behavior of an Al-10 vol pct SiCp composite has been studied. The Al-4 wt pct Mg-10 vol pct SiCp composite has been tested under compression creep in the temperature range 573 to 673 K. The steady-state creep data of the composite show a transition in the creep behavior (regions I and II) depending on the applied stress at 623 and 673 K. The low stress range data (region I) exhibit a stress exponent of about 7 and an activation energy of 76.5 kJ mol-1. These values conform to the dislocation-climb-controlled creep model with pipe diffusion as a rate-controlling mechanism. The intermediate stress range data (region II) exhibit high and variable apparent stress exponents, 18 to 48, and activation energy, 266 kJ mol-1, at a constant stress, σ = 50 MPa, for creep of this composite. This behavior can be rationalized using a substructure-invariant model with a stress exponent of 8 and an activation energy close to the lattice self-diffusion of aluminum together with a threshold stress. The creep data of the Al-Mg-A12O3f composite reported by Dragone and Nix also conform to the substructure-invariant model. The threshold stress and the creep strength of the Al-Mg-SiCp, composite are compared with those of the Al-Mg-Al2O3f and 6061 Al-SiCp.w, composites and discussed in terms of the load-transfer mechanism. Magnesium has been found to be very effective in improving the creep resistance of the Al-SiCp composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.P. Divecha, S.G. Fishman, and S.D. Karmarkar:J. Met., 1981, vol. 33, pp. 12–17.

    CAS  Google Scholar 

  2. A.P. Divecha and S.G. Fishman:SAMPE Q., 1981, vol. 12, pp. 40- 42.

    CAS  Google Scholar 

  3. D.L. McDanels:Metall. Trans. A, 1985, vol. 16A, pp. 1105–15.

    CAS  Google Scholar 

  4. S.V. Nair, J.K. Tien, and R.C. Bates:Int. Metall. Rev., 1985, vol. 30, pp. 275–90.

    CAS  Google Scholar 

  5. T.G. Nieh and R.F. Karlak:J. Mater. Sci. Lett., 1983, vol. 2, pp. 119- 22.

    Article  CAS  Google Scholar 

  6. D. Webster:Metall. Trans. A, 1982, vol. 13A, pp. 1511–19.

    Google Scholar 

  7. T.G. Nieh:Metall. Trans. A, 1984, vol. 15A, pp. 139–46.

    CAS  Google Scholar 

  8. V.C. Nardone and J.R. Strife:Metall. Trans. A, 1987, vol. 18A, pp. 109–14.

    CAS  Google Scholar 

  9. T.G. Nieh, K. Xia, and T.G. Langdon:J. Eng. Mater. Technol., 1988, vol. 110, pp. 77–82.

    Article  CAS  Google Scholar 

  10. T. Morimito, T. Yamaoka, H. Lilholt, and M. Taya:J. Eng. Mater. Technol., 1988, vol. 110, pp. 70–76.

    Google Scholar 

  11. R.S. Mishra and A.B. Pandey:Metall. Trans. A, 1990, vol. 21A, pp. 2089–90.

    CAS  Google Scholar 

  12. K. Xia, T.G. Nieh, J. Wadsworth, and T.G. Langdon:Fundamental Relationships between Microstructure and Mechanical Properties of Metal-Matrix Composites: The Minerals, Metals and Materials Society, TMS, Warrendale, PA, 1990, pp. 543–56.

    Google Scholar 

  13. A.B. Pandey, R.S. Mishra, and Y.R. Mahajan:Scripta Metall. Mater., 1990, vol. 24, pp. 1565–70.

    Article  CAS  Google Scholar 

  14. K.-T. Park, E.J. Lavernia, and F.A. Mohamed:Acta Metall. Mater., 1990, vol. 38, pp. 2149–59.

    Article  CAS  Google Scholar 

  15. A.B. Pandey, R.S. Mishra, and Y.R. Mahajan:Acta Metall. Mater., 1992, vol. 40, pp. 2045–52.

    Article  CAS  Google Scholar 

  16. F.A. Mohamed, K.-T. Park, and E.J. Lavernia:Mater. Sci. Eng. A, 1992, vol. 150A, pp. 21–35.

    Google Scholar 

  17. T.L. Dragone and W.D. Nix:Acta Metall. Mater., 1992, vol. 40, pp. 2781–91.

    Article  CAS  Google Scholar 

  18. G. Gonzalez-Doncel and O.D. Sherby:Acta Metall. Mater., 1993, vol. 41, pp. 2797–2805.

    Article  CAS  Google Scholar 

  19. A.B. Pandey, R.S. Mishra, and Y.R. Mahajan:Scripta Metall. Mater., 1993, vol. 29, pp. 1199–1204.

    Article  CAS  Google Scholar 

  20. P.E. Krajewski, J.E. Allison, and J.W. Jones:Metall. Trans. A, 1993, vol. 24A, pp. 2731–41.

    CAS  Google Scholar 

  21. J. Cadek, V. Sustek, and M. Pahutova:Mater. Sci. Eng. A, 1994, vol. 174A, pp. 141–47.

    Google Scholar 

  22. A.B. Pandey, R.S. Mishra, and Y.R. Mahajan:Mater. Sci. Eng. A, 1994, vol. 189A, pp. 95–104.

    Google Scholar 

  23. P. Yavari and T.G. Langdon:Acta Metall., 1982, vol. 30, pp. 2181- 96.

    Article  CAS  Google Scholar 

  24. O.D. Sherby and P.M. Burke:Prog. Mater. Sci., 1967, vol. 13, p. 325.

    Google Scholar 

  25. O.D. Sherby, Rodney H. Klundt and Alan K. Miller:Metall. Trans. A, 1977, vol. 8A, pp. 843–50.

    CAS  Google Scholar 

  26. A.B. Pandey: Ph.D. Dissertation, Banaras Hindu University, Varanasi, India, 1993.

  27. A.B. Pandey, R.S. Mishra, A.G. Paradkar, and Y.R. Mahajan: DMRL, Hyderabad, India, unpublished research, 1994.

  28. H.J. Frost and M.F. Ashby:Deformation Mechanism Maps, Pergamon Press, London, 1982.

    Google Scholar 

  29. T.S. Lundy and J.F. Murdock:J. Appl. Phys. 1962, vol. 33, pp. 1671- 73.

    Article  CAS  Google Scholar 

  30. H.W. Evans and G. Knowles:Met. Sci., 1980, vol. 14, pp. 262–66.

    Article  CAS  Google Scholar 

  31. E. Arzt and D.S. Wilkinson:Acta Metall., 1986, vol. 34, pp. 1893- 98.

    Article  CAS  Google Scholar 

  32. E. Arzt and J. Rosler:Acta Metall, 1988, vol. 36, pp. 1053–60.

    Article  CAS  Google Scholar 

  33. J.E. Bird, A.K. Mukherjee, and J.E. Dorn:Quantitative Relationships between Properties and Microstructure, D.G. Brandon and A. Rosen, eds., Israel Universities Press, Jerusalem, 1969, pp. 255–341.

    Google Scholar 

  34. S.L. Robinson and O.D. Sherby:Acta Metall, 1969, vol. 17, pp. 109- 25.

    Article  CAS  Google Scholar 

  35. H. Luthy, A.K. Miller, and O.D. Sherby:Acta Metall, 1980, vol. 28, pp. 169–78.

    Article  CAS  Google Scholar 

  36. J.H. Hausselt and W.D. Nix:Acta Metall, 1977, vol. 25, pp. 1491- 1502.

    Article  CAS  Google Scholar 

  37. R.S. Mishra:Scripta Metall Mater., 1992, vol. 26, pp. 309–13.

    Article  CAS  Google Scholar 

  38. J. Cadek:Creep in Metallic Materials, Elsevier, Amsterdam, 1988.

    Google Scholar 

  39. F.A. Girot, J.M. Quenisset, and R. Naslain:Comp. Sci. Technol, 1987, vol. 30, pp. 155–84.

    Article  CAS  Google Scholar 

  40. C.-F. Horng, S.-J. Lin, and K.-S. Liu:Mater. Sci. Eng. A, 1992, vol. 150A, pp. 289–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, A.B., Mishra, R.S. & Mahajan, Y.R. Effect of a solid solution on the steady-state creep behavior of an aluminum matrix composite. Metall Mater Trans A 27, 305–316 (1996). https://doi.org/10.1007/BF02648408

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648408

Keywords

Navigation