Skip to main content
Log in

Impulse response model in reconstruction of insulin secretion by deconvolution: Role of input design in the identification experiment

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Insulin secretion rate (ISR)in vivo can be reconstructed by deconvolution of plasma concentration of C-peptide (CP), a peptide co-secreted with insulin but not extracted by the liver and exhibiting linear kinetics. Deconvolution requires the knowledge of the CP impulse response. A two exponential model is usually chosen to describe the CP impulse response but three exponential and one exponential models have also been used. The purpose of this paper is to investigate the role of the CP impulse response model order in reconstructing ISR by deconvolution in three standard physiological/clinical situations: ultradian oscillations, rapid pulses, and biphasic response to a glucose stimulus. By resorting to simulation, we first show that, in each situation, the validity of impulse response models with different orders depends on the input chosen in the impulse response identification experiment. Real data are then used which support the simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carson, E., C. Cobelli, and L. Finkelstein.The Mathematical Modeling of Metabolic and Endocrine Systems. New York: John Wiley and Sons, 1983.

    Google Scholar 

  2. Cobelli, C., A. Ruggeri, J. J. Di Stefano II, and E. M. Landaw. Optimal design of multioutput sampling schedules. Software and applications to endocrine-metabolic and pharmacokinetic models.IEEE Trans. Biomed. Eng. 32:249–256, 1985.

    Article  PubMed  CAS  Google Scholar 

  3. D'Argenio, D. Z. Optimal sampling times for pharmacokinetic experiments.J. Pharmacokinet. Biopharm. 9:739–756, 1981.

    Article  PubMed  Google Scholar 

  4. De Nicolao, G., and D. Liberati. Linear and nonlinear techniques for the deconvolution of hormone time-series.IEEE Trans. Biomed. Eng. 40:440–455, 1993.

    Article  PubMed  Google Scholar 

  5. De Nicolao, G., D. Liberati, and A. Sartorio. Deconvolution of infrequently sampled data for the estimation of growth hormone secretion.IEEE Trans. Biomed. Eng. 42:678–697, 1995.

    Article  PubMed  Google Scholar 

  6. Eaton, R. P., R. C. Allen, D. S. Schade, K. M. Erickson, and J. Standefer. Prehapatic insulin production in man: Kinetic analysis using peripheral connecting peptide behaviour.J. Clin. Endocrinol. Metab. 51:520–528, 1980.

    PubMed  CAS  Google Scholar 

  7. Faber, O. K., C. Hagen, C. Binder, J. Markussen, V. K. Nahitani, P.M. Blix, H. Kuzuya, D. L. Horwitz, A. H. Rubenstein, and N. Rossing. Kinetics of human connecting peptide in normal and diabetic subjects.J. Clin. Invest. 62:197–202, 1979.

    Google Scholar 

  8. Hansen, B. C., K. L. Jen, S. B. Pek, and R. A. Wolfe. Rapid oscillations in plasma insulin, glucagon, and glucose in obese and normal weight humans.J. Clin. Endocrinol. Metab. 54:785–792, 1982.

    PubMed  CAS  Google Scholar 

  9. Hsu, H. P.Outline of Fourier Analysis. New York: Unitech Division, 1967.

    Google Scholar 

  10. Lang, D. A., D. R. Matthews, D. Phil, J. Peto, and R. C. Turner. Cyclic oscillations of basal plasma glucose and insulin concentrations in human beings.N. Engl. J. Med. 301:1023–1027, 1979.

    Article  PubMed  CAS  Google Scholar 

  11. Landaw, E. M., and J. J. DiStefano III. Multiexponential, multicompartmental, and noncompartmental modeling. II. Data analysis and statistical considerations.Am. J. Physiol. 246:R665-R677, 1984.

    PubMed  CAS  Google Scholar 

  12. Oppenheim, A. V., and R. W. Schafer.Digital Signal Processing. Englewood Cliffs, NJ: Prentice and Hall, 1975.

    Google Scholar 

  13. Papoulis, A.The Fourier Integral and Its Applications. New York, NY: McGraw-Hill, 1962.

    Google Scholar 

  14. Pilo, A., E. Ferrannini, and R. Navalesi. Measurement of glucose-induced delivery rate in man by deconvolution analysis.Am. J. Physiol. 233:E500-E508, 1977.

    PubMed  CAS  Google Scholar 

  15. Polonsky, K. S., and A. H. Rubenstein. C-peptide as a measure of the secretion and hepatic extraction of insulin: Pitfalls and limitations.Diabetes 33:486–494, 1984.

    Article  PubMed  CAS  Google Scholar 

  16. Polonsky, K. S., J. Licinio-Paixao, B. D. Given, W. Pugh, P. Rue, J. Galloway, T. Karrison, and B. Frank Use of biosynthetic human C-peptide in the measurement of insulin secretion rates in normal volunteers and type I diabetic patients.J. Clin. Invest. 77:98–105, 1986.

    PubMed  CAS  Google Scholar 

  17. Polonsky, K. S., B. D. Given, and E. Van Cauter. Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects.J. Clin. Invest. 81:442–448, 1988.

    PubMed  CAS  Google Scholar 

  18. Rubenstein, A. H., L. A. Pottenger, M. Mako, G. S. Getz, and D. F. Steiner. The metabolism of insulin and proinsulin by the liver.J. Clin. Invest. 51:912–920, 1972.

    Article  PubMed  CAS  Google Scholar 

  19. Shapiro, E. T., H. Tillil, K. S. Polonsky, V. S. Fang, A. H. Rubenstin, and E. Van Cauter. Oscillations in insulin secretion during costant glucose infusion in normal man: Relationship to change in plasma glucose.J. Clin. Endocrinol. Metab. 67:307–314, 1988.

    PubMed  CAS  Google Scholar 

  20. Shapiro, E. T., H. Tillil, A. H. Rubenstein, and K. S. Polonsky. Peripheral insulin parallels changes in insulin secretion more closely than C-peptide after bolus intravenous glucose administration.J. Clin. Endocrinol. Metab. 67:1094–1099, 1988.

    Article  PubMed  CAS  Google Scholar 

  21. Sparacino, G., J. Sturis, N. O. Meara, M. Byrne, G. De Nicolao, K. Polonsky, and C. Cobelli. A deconvolution method to quantify rapid pulses in insulin secretion. In:Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 15, edited by A. Szeto and R. Rangayyan. San Diego, CA: 1993, pp. 536–537.

  22. Sparacino, G., and C. Cobelli. A stochastic deconvolution method to reconstruct insulin secretion rate after a glucose stimulus.IEEE Trans. Biomed. Eng. 43:512–529, 1996.

    Article  PubMed  CAS  Google Scholar 

  23. Sturis, J., E. Van Cauter, J. D. Blackman, and K. S. Polonsky. Entrainment of pulsatile insulin secretion by oscillatory glucose infusion.J. Clin. Invest.87:439–445, 1991.

    PubMed  CAS  Google Scholar 

  24. Toffolo, G., F. De Grandi, and C. Cobelli. Estimation of beta cell sensitivity from IVGTT C-peptide data. Knowledge of the kinetics avoids errors in modeling the secretion.Diabetes 44:845–854, 1995.

    Article  PubMed  CAS  Google Scholar 

  25. Van Cauter, E., F. Mestrez, J. Sturis, and K. S. Polonsky. Estimation of insulin secretion rates from C-peptide levels: comparison of individual and standard parameters for C-peptide clearance.Diabetes 41:368–377, 1992.

    Article  PubMed  Google Scholar 

  26. Volund, A., K. S. Polonsky, and R. N. Bergman. Calculated pattern of intraportal insulin appearance without independent assessment of C-peptide kinetics.Diabetes 36:1195–1202, 1987.

    Article  PubMed  CAS  Google Scholar 

  27. Volund, A. Application of stochastic simulations to assess precision and robustness of kinetic models for estimation of insulin secretion. In:Proceedings of the 2nd IFAC Symposium on Modeling and Control in Biomedical Systems, Galveston, Texas, March 1994, edited by B. W. Patterson. Madison, WI: Omnipress, 1994, pp. 293–294.

    Google Scholar 

  28. Watanabe, R. M., A. Volund, R. Subir, and R. N. Bergman. Prehepatic beta cell secretion during the intravenous glucose tolerance test in humans: Applications of a combined model of insulin and C-peptide kinetics.J. Clin. Endocrionol. Metab. 69:790–797, 1989.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sparacino, G., Cobelli, C. Impulse response model in reconstruction of insulin secretion by deconvolution: Role of input design in the identification experiment. Ann Biomed Eng 25, 398–416 (1997). https://doi.org/10.1007/BF02648051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648051

Keywords

Navigation