Skip to main content
Log in

An automated method for analysis and visualization of laser doppler velocimetry data

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The analysis and visualization of large data sets collected by use of laser Doppler velocimetry has presented a challenge to researchers using this technique to investigate complex flow fields. This paper describes an automated procedure for analysis and animation of two- and three-dimensional laser Doppler velocimetry data. The procedure consists of a suite of FORTRAN programs for calculating phase window averages of velocity and the Reynolds stress tensor, calculating the principal normal stresses, maximum shear stresses, and preparation of data files for input into Plot-3D compatible data visualization software. An example application of these techniques to data collected from anin vitro investigation of the retrograde flow field associated with a bileaflet mechanical heart valve is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

G k i :

gate time on velocity channeli associated with samplek

\(\bar G_{ij}^k \) :

Gate time average between channelsi andj for samplek

I n 1 ,I n 2 ,I n 3 :

Binn invariants for three-dimensional principal stress calculations

SD n i :

Standard deviation for velocity channeli measurements in binn

\(\bar \sigma _{pi}^n \) :

Time averaged principal normal stress in binn

\(\bar \sigma _{pij}^n \) :

Time averaged potential maximum shear stress in binn

\(\bar \tau _{ij}^n \) :

Time averaged Reynolds stress for binn

\(\bar \tau _{Max}^n \) :

Time averaged maximum observed shear stress for binn

v i k :

Instantaneous velocity recorded on channeli for samplek

\(\bar v_i^n \) :

Time averaged channeli velocity for binn

References

  1. Facts from Algebra: Cubic Equations. In:Handbook of Tables for Mathematics (Fourth edition revised); edited by S. M. Selby. Cleveland, OH: CRC Press, Inc., 1975, pp. 129–131.

    Google Scholar 

  2. Atkinson, K. E.Introduction to Numerical Analysis. New York, NY: John Wiley & Sons, 1989.

    Google Scholar 

  3. Baldwin, J. T., S. Deutsch, D. B. Gesalowitz, and J. M. Tarbell. LDA measurements of mean velocity and Reynolds stress fields within an artificial heart ventricle.J. Biomech. Eng. 116:190–200, 1994.

    PubMed  CAS  Google Scholar 

  4. Baldwin, J. T., S. Deutsch, H. L. Petrie, and J. M. Tarbell. Determination of principal Reynolds stresses in pulsatile flows after elliptical filtering of discrete velocity measurements.J. Biomech. Eng. 115:396–403, 1993.

    PubMed  CAS  Google Scholar 

  5. Bluestein, D., and S. Einav. The effect of varying degrees of stenosis on the characteristics of turbulent pulsatile flow through heart valves.J. Biomech. 28:915–924, 1995.

    Article  PubMed  CAS  Google Scholar 

  6. Fontaine, A. A., J. T. Ellis, T. M. Healy, J. Hopmeyer, and A. P. Yoganathan. Identification of peak stresses in cardiac prostheses: A comparison of two-dimensional and three-dimensional principal stress analyses.ASAIO J. 42:154–163, 1996.

    Article  PubMed  CAS  Google Scholar 

  7. Garver, D., R. G. Kaczmarek, B. G. Silverman, T. P. Gross, and P. M. Hamilton. The epidemiology of prosthetic heart valves in the United States.Tex. Heart Inst. J. 22:86–91, 1995.

    PubMed  CAS  Google Scholar 

  8. Gross, J. M., G. X. Guo, and N. H. C. Hwang. Venturi pressure cannot cause cavitation in mechanical heart valve prostheses.ASAIO Trans. 37:M357-M358, 1991.

    PubMed  CAS  Google Scholar 

  9. Higdon, A., E. H. Ohlsen, W. B. Stiles, J. A. Weese, and W. F. Riley,Mechanics of Materials, New York, NY: John Wiley & Sons, 1985.

    Google Scholar 

  10. Horstkotte, D., and D. Burckhardt. Prosthetic valve thrombosis,J. Heart Valve Dis. 4:141–153, 1995.

    PubMed  CAS  Google Scholar 

  11. Sung, H. W., E. G. Cape, and A. P. Yoganathan. In vitro fluid dynamic evaluation of the Carbomedics bileaflet heart valve prosthesis in the aortic and mitral positions.J. Heart Valve Dis. 3:673–683, 1994.

    PubMed  CAS  Google Scholar 

  12. Sutera, S. P., and J. H. Joist. Haematological effects of turbulent blood flow. In:Thrombosis, Embolism and Bleeding, edited by E. G. Butchart and E. Bodnar, London: ICR Publishers, 1992, pp. 149–159.

    Google Scholar 

  13. Yoganathan, A. P., T. M. Wick, and H. Reul. Influence of flow characteristics of prosthetic valves on thrombus formation. In:Thrombosis, Embolism and Bleeding, edited by E. G. Butchart and E. Bodnar, London: ICR Publishers, 1992, pp. 123–148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Healy, T.M., Ellis, J.T., Fontaine, A.A. et al. An automated method for analysis and visualization of laser doppler velocimetry data. Ann Biomed Eng 25, 335–343 (1997). https://doi.org/10.1007/BF02648047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648047

Keywords

Navigation