Skip to main content
Log in

Streaming potentials during the confined compression creep test of normal and proteoglycan-depleted cartilage

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The streaming potential response of cartilage in the confined compression creep configuration was assessed theoretically and measured experimentally in normal and proteoglycan-depleted tissue. The analytical solution, using the linear biphasic continuum model including electrokinetics and assuming homogeneous material properties, predicted that: (i) the peak streaming potentials is ΔV=ke·Δσ, where ke is the electrokinetic coefficient and Δσ is the change in compressive stress; (ii) the potential is maintained at 95 to 100% of the peak value of 0<t<0.10τ, where τ is the gel diffusion time constant; and (iii) during short times, 0<t<0.01 τ, 90% of the peak streaming potential occurs over a region extending 23% into the tissue sample. Experimentally, adult bovine cartilage disks, 0.5 mm thick, were subjected to step changes of compressive stress. The measured changes in potential indicated a linear response for changes in stress up to 0.10 MPa. The ke of normal cartilage, estimated from the short time (0<t<2 sec) change in potential, was −1.65±1.25 mV/MPa. Digestion of cartilage by chondroitinase ABC resulted in an increased (less negative) ke of −0.75±0.70 mV/MPa and a 33±29% depletion of anionic glycosaminoglycan, whereas digestion with trypsin resulted in a further increase in ke to +1.64±0.95 mV/MPa and a 98±1% depletion of glycosaminoglycan. The streaming potential measurement may be a useful addition to the widely used confined compression creep test to assess cartilage material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

δ:

specimen thickness

ke :

electrokientic coefficient

kij :

electrokinetic coupling coefficients (i,j=1,2)

kp :

open circuit hydraulic permeability

HA :

equilibrium confined compression modulus

J:

current density

Pf :

fluid pressure

s:

sample standard deviation

σo, Δσ:

applied compressive stress, change in applied compressive stress

t, ť:

time, normalized time

tp :

duration of a pulse in stress

τ:

gel diffusion time

u, û:

displacement, normalized displacement

U:

fluid velocity relative to solid phase

\(V,\hat V\) :

electrical potential, normalized potential

\(\Delta V,\hat V_{OC} \) :

open circuit streaming potential, normalized streaming potential

z, ž:

position relative to the articular surface, normalized position

References

  1. Armstrong, C. G., and V. C. Mow. Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content.J. Bone Joint Surg. 64A:88–94, 1982.

    Google Scholar 

  2. Bassett, C. A. L., and R. J. Pawluk. Electrical behavior of cartilage during loading.Science 178:982–983, 1972.

    Article  PubMed  CAS  Google Scholar 

  3. Berkenblit, S. I., E. H. Frank, E. P. Salant, and A. J. Grodzinsky. Nondestructive detection of cartilage degeneration using electromechanical surface spectroscopy.J. Biomech. Eng. 116:384–392, 1994.

    PubMed  CAS  Google Scholar 

  4. Bonassar, L. J., E. H. Frank, J. Murray, C. G. Paguio, V. L. Moore, M. W. Lark, and A. J. Grodzinsky. Changes in cartilage composition and functional properties due to stromelysin degradation.Trans. Orthop. Res. Soc. 18:192, 1993.

    Google Scholar 

  5. Bonassar, L. J., C. G. Paguio, E. H. Frank, K. A. Jeffries, V. L. Moore, M. W. Lark, and A. J. Grodzinsky. Effects of matrix metalloproteinases on cartilage swelling and biophysical propertiesin vitro andin vivo.Trans. Orthop. Res. Soc. 19:310, 1994.

    Google Scholar 

  6. Buschmann, M. D., J. S. Jurvelin, and E. B. Hunziker. Comparison of sinusoidal and stress relaxation measurements of cartilage in confined compression: the biphasic poroelastic model and the role of the porous compressing platen.Trans. Orthop. Res. Soc. 20:521, 1995.

    Google Scholar 

  7. Chen, A. C., T. T. Nguyen, and R. L. Sah. Streaming potentials in normal and degraded articular cartilage.Trans. Orthop. Res. Soc. 20:336, 1995.

    Google Scholar 

  8. DeGroot, S. R., and P. Mazur. Nonequilibrium Thermodynamics, Amsterdam, North-Holland Publishing Company 1969, pp. 1–510.

    Google Scholar 

  9. Eisenberg, S. R., and A. J. Grodzinsky. Electrokinetic micromodel of extracellular matrix and other polyelectrolyte networks.Physicochem. Hydrodyn. 10:517–539, 1988.

    CAS  Google Scholar 

  10. Farndale, R. W., D. J. Buttle, and A. J. Barrett. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue.Biochim. Biophys. Acta 883:173–177, 1986.

    PubMed  CAS  Google Scholar 

  11. Frank, E. H., and A. J. Grodzinsky. Cartilage electromechanics. I. Electrokinetic transduction and the effects of electrolyte pH and ionic strength.J. Biomech. 20:615–627, 1987.

    Article  PubMed  CAS  Google Scholar 

  12. Frank, E. H., and A. J. Grodzinsky. Cartilage electromechanics. II. A continuum model of cartilage electrokinetics and correlation with experiemnts.J. Biomech. 20:629–639, 1987.

    Article  PubMed  CAS  Google Scholar 

  13. Frank, E. H., A. J. Grodzinsky, T. J. Koob, and D. R. Eyre. Streaming potentials: a sensitive index of enzymatic degradation in articular cartilage.J. Orthop. Res. 5:497–508, 1987.

    Article  PubMed  CAS  Google Scholar 

  14. Frank, E. H., A. J. Grodzinsky, S. L. Phillips, and P. E. Grimshaw. Physicochemical and bioelectrical determinants of cartilage material properties. In: Biomechanics of diarthrodial joints, edited by V. C. Mow, A. Ratcliffe, and S. L. Y. Woo. New York: Springer-Verlag, 1990, pp. 261–282.

    Google Scholar 

  15. Geddes, L. A., and L. E. Baker. Principles of Applied Biomedical Instrumentation. New York: John Wiley & Sons, 1989, pp. 1–961.

    Google Scholar 

  16. Gray, M. L., A. M. Pizzanelli, A. J. Grodzinsky, and R. C. Lee. Mechanical and physicochemical determinants of the chondrocyte biosynthetic response.J. Orthop. Res. 6:777–792, 1988.

    Article  PubMed  CAS  Google Scholar 

  17. Grimshaw, P. E. The response of cartilage in compression as it undergoes diffusion limited chemical changes. MS Thesis (electrical engineering). Camgridge, MA: Massachusetts Institute of Technology, 1982.

    Google Scholar 

  18. Grodzinsky, A. J.. Electromechanical and physiocochemical properties of connective tissue.CRC Crit. Rev. Bioeng. 9:133–199, 1983.

    CAS  Google Scholar 

  19. Grodzinsky, A. J., and E. H. Frank. Electromechanical and physicochemical regulation of cartilage strength and metabolism. In: Connective tissue matrix, vol. II. Topics in molecular and structural biology, edited by D. W. L. Hukins, Boca Raton, FL: CRC Press, 1990, pp. 91–126.

    Google Scholar 

  20. Grodzinsky, A. J., H. Lipshitz, and M. J. Glimcher. Electromechanical properties of articular cartilage during compression and stress-relaxation.Nature 275:448–450, 1978.

    Article  PubMed  CAS  Google Scholar 

  21. Gu, W. Y., W. M. Lai, and V. C. Mow. Transport of fluid and ions through a porous-permeable charged-hydrated tissue, and streaming potential data on normal bovine articular cartilage.J. Biomech. 26:709–723, 1993.

    Article  PubMed  CAS  Google Scholar 

  22. Helfferich, F. Ion Exchange. New York: McGraw-Hill, 1962, pp. 1–624.

    Google Scholar 

  23. Kim, Y. J., L. J. Bonassar, and A. J. Grodzinsky. The role of cartilage streaming potential, fluid flow and pressure in the stimulation of chondrocyte biosynthesis during dynamic compression.J. Biomech. 28:1055–1066, 1995.

    Article  PubMed  CAS  Google Scholar 

  24. Lai, W. M., J. S. Hou, and V. C. Mow. A triphasic theory for the swelling and deformation behaviors of articular cartilage.J. Biomech. Eng. 113:245–258, 1991.

    PubMed  CAS  Google Scholar 

  25. Lee, R. C., E. H. Frank, A. J. Grodzinsky, and D. K. Roylance. Oscillatory compressional behavior of articular cartilage and its associated electromechanical properties.J. Biomech. Eng. 103:280–292, 1981.

    PubMed  CAS  Google Scholar 

  26. Lotke, P. A., J. Black, and S. J. Richardson. Electromechanical properties in human articular cartilage.J. Bone Joint Surg. 56A:1040–1046, 1974.

    Google Scholar 

  27. Maroudas, A. Physicochemical properties of cartilage in the light of ion exchange theory.Biophys. J. 8:575–595, 1968.

    Article  PubMed  CAS  Google Scholar 

  28. Maroudas, A. Physico-chemical properties of articular cartilage. In: Adult articular cartilage, edited by M.A.R. Freeman. Tunbridge Wells, England: Pitman, 1979, pp. 215–290.

    Google Scholar 

  29. Maroudas, A., and P. Bullough. Permeability of articular cartilage.Nature 219:1260–1261, 1968.

    Article  PubMed  CAS  Google Scholar 

  30. Maroudas, A., H. Muir, and J. Wingham. The correlation of fixed negative charge with glycosaminoglycan content of human articular cartilage.Biochim. Biophys. Acta 177:492–500, 1969.

    PubMed  CAS  Google Scholar 

  31. Mow, V. C., S. C. Kuei, W. M. Lai, and C. G. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiment.J. Biomech. Eng. 102:73–84, 1980.

    Article  PubMed  CAS  Google Scholar 

  32. Mow, V. C., W. Zhu, and A. Ratcliffe. Structure and function of articular cartilage and meniscus. In: Basic orthopaedic biomechanics, edited by V. C. Mow and W. C. Hayes, New York, Raven Press, 1991, pp. 143–198.

    Google Scholar 

  33. O'Connor, P., C. R. Orford, and D. L. Gardner. Differential response to compressive loads of zones of canine hyaline articular cartilage: micromechanical light and electron microscopic studies.Ann. Rheum. Dis. 47:414–420, 1988.

    Article  PubMed  Google Scholar 

  34. Reindel, E. S., A. M. Ayroso, A. C. Chen, R. M. Schinagl, D. M. Chun, and R. L. Sah. Integrative repair of articular cartilagein vitro: adhesive strength of the interface region.J. Orthop. Res. 13:751–760, 1995.

    Article  PubMed  CAS  Google Scholar 

  35. Sah, R. L., S. B. Trippel, and A. J. Grodzinsky. Differential effects of serum, IGF-I, and FGF-2 on the maintenance of cartilage physical properties during long-term culture.J. Orthop. Res. 14:44–52, 1996.

    Article  PubMed  CAS  Google Scholar 

  36. Sandy, J. D., A. H. K. Plaas, and L. Rosenberg. Structure, function and metabolism of cartilage proteoglycans. In: Arthritis and allied conditions, edited by D. J. McCarty, and W. J. Koopman. Baltimore. Williams and Wilkins, 1997, pp. 229–242.

    Google Scholar 

  37. Schinagl, R. M., M. K. Ting, J. H. Price, and R. L. Sah. Video microscopy to quantitate the inhomogeneous confined compression modulus of articular cartilage.Ann. Biomed. Eng. 24:500–512, 1996.

    PubMed  CAS  Google Scholar 

  38. Schneiderman, R., D. Kevet, and A. Maroudas. Effects of mechanical and osmotic pressure on the rate of glycosaminoglycan synthesis in the human adult femoral head cartilage: an in vitro study.J. Orthop. Res. 4:393–408, 1986.

    Article  PubMed  CAS  Google Scholar 

  39. Thurston, C. F., T. E. Hardingham, and H. Muir. The kinetics of degradation of chondroitin sulphate and hyaluronic acid by chondroitinase from proteus vulgaris.Biochem. J. 145:397–400, 1975.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, A.C., Nguyen, T.T. & Sah, R.L. Streaming potentials during the confined compression creep test of normal and proteoglycan-depleted cartilage. Ann Biomed Eng 25, 269–277 (1997). https://doi.org/10.1007/BF02648041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648041

Keywords

Navigation